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PREFACE

JASP stands for Jeffrey’s Amazing Statistics Program in recognition of the pioneer of Bayesian
inference Sir Harold Jeffreys. This is a free multi-platform open-source statistics package, developed
and continually updated by a group of researchers at the University of Amsterdam. Their aim was to
develop a free, open-source programme that includes both frequentist, Bayesian and more advanced
statistical techniques with a major emphasis on providing a simple intuitive user interface.

In contrast to many statistical packages, JASP provides a simple drag and drop interface, easy access
menus, intuitive analysis with real-time computation and display of all results. All tables and graphs
are presented in APA format and can be copied directly and/or saved independently. Tables can also
be exported from JASP in LaTeX format

JASP can be downloaded free from the website https://jasp-stats.org/ and is available for Windows,
Mac OS X and Linux. You can also download a pre-installed Windows version that will run directly from
a USB or external hard drive without the need to install it locally. The WIX installer for Windows
enables you to choose a path for the installation of JASP — however, this may be blocked in some
institutions by local Administrative rights.

The programme also includes a data library with an initial collection of over 50 datasets from Andy
Fields book, Discovering Statistics using IBM SPSS statistics® and The Introduction to the Practice of
Statistics? by Moore, McCabe and Craig.

Since May 2018 JASP can also be run directly in your browser via rollApp™ without having to install it
on your computer (https://www.rollapp.com/app/jasp). However, this may not be the latest version
of JASP.

Keep an eye on the JASP site since there are regular updates as well as helpful videos and blog posts!!

Please note that the underlying concepts of Bayesian analyses are not covered in this book since
there many other books and reviews that cover these in much more depth. Some easy reading
papers with reference to JASP are listed on the next page. This is a collection of standalone handouts
covering the most common Bayesian statistical analyses available in JASP for students studying
Biological Sciences. Datasets used in this document are available for download from
https://osf.io/8qtu2/

| would also like to acknowledge both EJ Wagenmakers and Johnny van Doorn at the University of
Amsterdam for their support, in-depth advice and help in compiling this guide.

Dr Mark Goss-Sampson
Centre for Science and Medicine in Sport & Exercise
University of Greenwich

L A Field. (2017) Discovering Statistics Using IBM SPSS Statistics (5™ Ed.) SAGE Publications.
2D Moore, G McCabe, B Craig. (2011) Introduction to the Practice of Statistics (7th Ed.) W H Freeman.
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RECCOMENDED EASY READING

Wagenmakers, E.-J., Marsman, M., Jamil, T., Ly, A., Verhagen, A. )., Love, J., Selker, R., Gronau, Q. F.,
Smira, M., Epskamp, S., Matzke, D., Rouder, J. N., Morey, R. D. (2018). Bayesian inference for
psychology. Part I: Theoretical advantages and practical ramifications. Psychonomic Bulletin &
Review, 25, 35-57.

Wagenmakers, E.-J et al (2018). Bayesian inference for psychology. Part Il: Example applications with
JASP. Psychonomic Bulletin & Review, 25, 58-76. (Preprint).

Quintana, D. S., & Williams, D. R. (2018). Bayesian alternatives for common null-hypothesis
significance tests in psychiatry: A non-technical guide using JASP. BMC Psychiatry, 2018 (18), 178.
DOI: 10.1186/s12888-018-1761-4. (Open Access).

Van Doorn J et al (2019 ) The JASP Guidelines for Conducting and Reporting a Bayesian Analysis.
https://psyarxiv.com/yqxfr
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USING THE JASP ENVIRONMENT

Open JASP.

" X7 ST A

4 JASP

* Free:

® Friendly:

* Flexible:

Welcome to JASP

1dly, and Flexible

JASP is an open-source project with structural support from the University

of Amsterdam.

JASP has an intuitive interface that was designed with the user in mind.

JASP pffers standard analysis procedures in both their classical and Bayesian

manifestations.

So open a data file and take JASP for a spin!

and a number

then check back tom

The main menu can be accessed by clicking on the top-left icon.

Open

Save

Save As

Export Results

Export Data

Sync Data

Close

Preferences

About

Recent Fies

Computer

Data Library

Open:

|
[ ]
. .sav (IBM SPSS data file)
| @ .ods (Open Document spreadsheet)

Library in JASP.

JASP has its own .jasp format but can open a variety of
different dataset formats such as:

° .csv (comma separated values) can be saved in Excel
.txt (plain text) also can be saved in Excel
.tsv (tab-separated values) also can be saved in Excel

You can open recent files, browse your computer files,
access the Open Science Framework (OSF) or open the
wide range of examples that are packaged with the Data

Data Sets (*,jasp *.csv *.bt *.sav ¥

Open

Cancel

JASP — Bayesian Inference. Dr Mark Goss-Sampson




Open

Save As

Export Results

Export Data

Sync Data

Close

Preferences

About

Computer

»

Preferences:

Save/Save as:

Using these options the data file, any annotations and the analysis
can be saved in the .jasp format

Export:

Results can be exported to an HTML file

Data can be exported to either a .csv or .txt file
Sync data:

Used to synchronize with any updates in the current data file (also
can use Ctrl-Y)

Close:

As it states - it closes the current file but not JASP

There are three sections that users can use to tweak JASP to suit their needs

Results

Advanced

Data Preferences o

Synchronize automatically on data file save

Import threshold between Nominal or Scale == 1 +

Missing Value List

Use default spreadsheet editor

Select custom editor  C:fProgram Files/Microsoft Office/Officel5/EXCEL.EXE

NaN
nan

NA

Reset

In the Data Preferences section users can:

Synchronize/update the data automatically when the data file is saved (default)

Set the default spreadsheet editor (i.e. Excel, SPSS etc)

Change the threshold so that JASP more readily distinguishes between nominal and scale data
Add a custom missing value code

8|Page
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Data . | Results Preferences

Table options
Results > prio
Display exact p-values
Fix the number of decimals =~ == 2 +
Advanced >

Plot options
Use PPI of screen in plots: 26
CustomPPL == | 300 |

Image background color
O White

Transparent

In the Results Preferences section users can:

e Fix the number of decimals for data in tables — makes tables easier to read/publish
e Change the pixel resolution of the graph plots
e Select when copying graphs whether they have a white or transparent background.

User Interface options

Themes
© Light Theme
Dark Theme

Preferred Language

Choose Language  English v
Miscellaneous options
Zoom (%): = 100 <

Scrol speed (pix/s): == 800 =

Safe Graphics Mode

Use Native File Dialogs

In the Interface Preferences section users can now pick between two different themes; a light theme
(default) and a dark theme. The preferred language currently supports English and Dutch only. In this
section, there is also the ability to change the system font size for accessibility and the scroll speeds.

In the Advanced Preferences section, most users will probably never have to change any of the default
settings.
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Comparison of the dark and light themes in JASP

N

Descriptives T-Tests

Bayesian Correlation

Correlation

%, Shot Score
%, Ball Speed
% Launch Angle
%% Back Spin
%, Distance

Correlation
Pe

Spearman

Kendall's tau-b

JASP — Bayesian Inference. Dr Mark Goss-Sampson

% Shot Score 12
% Ball Speed

% Launch Angle

% Back Spin

% Distance

Had™ LEE°

Descriptives T-Tests

Bayesian Correlation

Correlation

Correlation Coefficient
Pearson

Spearman

Kendal's tau-b

Alt. Hypothesis
O Correlated

Correlated positively
Correlated negatively

i
ANOV.
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JASP has a streamlined interface to switch between the spreadsheet, analysis and results views.

p—
Y Descriptive Statistics 09000 esults
Variables I e
. escriptive Statistics
% Varable
-
5 5 Descriptive Stafisfics
Variable
Group 1 Group 2
Valid 35 495
Missing 0 0
Mean 16.021 18787
Std. Deviation 5.424 7.040
Minimum 1.100 0.200
Maximum 35800 36.900
> “
fEoxplots
Fplt Variable
» & Group
. -
Frequency tables (nominal and ordinal variables) —_—
30 -
Plots
§ [}
C@tomizable plots Basic plots e 20
] -
. olor palette Colorblind v Distribution plots . E
: Boxplots Display density : =
Boxplot element Use color palette Correlation plots 10 -
Violin element Label outliers Q-Q plots
Jitter element Pie charts n .
—

The vertical bars highlighted above allows for the windows to be dragged right or left by clicking and
dragging the three vertical dots B

The individual windows can also be completely collapsed using the right or left arrow icons > 4

If you hover the cursor over the Results a ¥ icon appears, clicking on this provides a range of options
including:

o Remove all analyses from the output window
e Remove selected analysis

e Collapse the output

e Add notes to each output

e Copy

e Copy special (LaTeX code)

e Save image as

The ‘add notes’ option allows the results output to be easily annotated and then exported to an HTML
file by going to File > Export Results.
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B I U%®% Normal 2 2= A K O x, X! 9 EE Normal = T

The Add notes menu provides many options to change text font, colour size etc.

Bayesian ANOVA

Model Comparison

Models POV P{M|data) BF BF g rror %
Group 0.500 1.000  1.425e+22 1.000
Mull model 0.500 7.016e-29 7.016e-29 7.016e-29 650726

One-way Bayesian independent ANOWVA

You can change the size of all the tables and graphs using ctrl+ (increase) ctrl- (decrease) ctrl= (back
to default size). Graphs can also be resized by dragging the bottom right corner of the graph.

As previously mentioned, all tables and figures are APA standard and can just be copied into any other
document. Since all images can be copied/saved with either a white or transparent background. This
can be selected in Preferences > Advanced as described earlier.

There are many further resources on using JASP on the website https://jasp-stats.org/

12| Page
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DATA HANDLING IN JASP

For this section open England injuries.csv

All files must have a header label in the first row. Once loaded, the dataset appears in the window:

Y | # Opponent |\ Injuries | =
1 Japan 4
2 Japan 1
3 Japan 3
4 Japan -]
5 Japan 2
& Japan 3
7 Japan 4
] Japan 1]
g Japan 5
10 Japan 2
11 Japan 2
12 MNew Zealand 2
13 MNew Zealand 4

For large datasets, there is a hand icon which allows easy scrolling through the data. @

On import JASP makes a best guess at assigning data to the different variable types:

Nominal ‘ Ordinal ‘ Continuous \

If JASP has incorrectly identified the data type just click on the appropriate variable data icon in the
column title to change it to the correct format.

h &j Opponent alru'uneg

* Scale
Japan 1
= P al Ordinal |
3 Japan 3 & Mominal

If you have coded the data, you can click on the variable name to open up the following window in
which you can label each code. These labels now replace the codes in the spreadsheet view. If you
save this as a .jasp file these codes, as well as all analyses and notes, will be saved automatically. This
makes the data analysis fully reproducible.

13 |Page
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In this window, you can also carry out simple filtering of data, for example, if you untick the Wales
label it will not be used in subsequent analyses.

Clicking this icon in the spreadsheet window opens a much more comprehensive set of data
filtering options:

+-*m A% =< <>2AV | -
%G...e Ivl
# Cou...ode oy
& Number of... Injuries O’y
2
[1v
min(Y)
max(¥)
— mean(Y)

Mﬂ] round(Y)

Welcome to the drag and drop filter! length(y)
median(y)

Using this option will not be covered in this document. For detailed information on using more
complex filters refer to the following link: https://jasp-stats.org/2018/06/27/how-to-filter-your-data-

in-jasp/

14 |Page
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By default, JASP plots data in the Value order (i.e. 1-4). The order can be changed by highlighting the
label and moving it up or down using the appropriate arrows:

Filter | value Label || a || Moveup
1 Tonga
r// 3 Mew Zaaland w || Move down
3 France
5 4 Wales Tl || Reverse order
Close
X

. Injuries
Injuries

10— 104

hh 8 NE el

Injuries
Injuries

| I | |
Wales Tonga New Zealand Japan

Japan  New z'eaclgapn;one nTtor'1ga Wales Opponent
Filter Value Label Filter Value Label
v Japan Japan \/ Wales Wales
v/ New Zealand New Zealand ‘/ Tonga Tonga
v Tonga Tonga \/ New Zealand New Zealand
v~ Wales Wales v

Japan Japan

If you need to edit the data in the spreadsheet just double click on a cell and the data should open up
in the original spreadsheet i.e. Excel. Once you have edited your data and saved the original
spreadsheet JASP will automatically update to reflect the changes that were made, provided that you
have not changed the file name.
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JASP ANALYSIS MENU

lad™ [2E7 887 X7 ST AN

Descriptives ~ T-Tests ANOVA  Regression Frequencies Factor

The main analysis options can be accessed from the main toolbar. JASP offers a range of frequentist
and Bayesian (parametric and non-parametric) statistics and for the purpose of this guide the
following alternative Bayesian tests are described:

Descriptives Bayesian Correlation & Regression

o Descriptive stats e Correlation
e Linear regression

Bayesian T-Tests Bayesian Frequencies
e Independent e Binomial test
e Paired e  Multinomial test
e Onesample e Contingency tables
Bayesian ANOVA BAIN
e Independent e Bayesian informative  hypotheses
e Repeated measures evaluation

e Mixed factor

BY clicking on the ¥ icon on the top-right menu bar you can also access advanced options including;

Network analysis, Meta-Analysis, Structural Equation Modelling and Bayesian Summary stats.

Once you have selected your required analysis all the possible statistical options appear in the left
window and output in the right window.

JASP has the ability to rename and ‘stack’ the results output thereby organising multiple analyses.

> Bayesian ANOVA
> Bayesian Independent Samples T-Test

¥ Bayesian Correlation Matrix 0000

The individual analyses can be renamed using the pen icon or deleted using the red cross.

16 |Page
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> Descriptive Statistics

> Bayesian Independent Samples T-Test - body mass

¥ Bayesian Independent Samples T-Test-Fatmass @ © O ©

By clicking on the analysis in this list will then take you to the appropriate part of the results output
window. They can also be rearranged by dragging and dropping each of the analyses.

The green + icon produces a copy of the chosen analysis

The blue information icon provides detailed information on each of the statistical procedures used
and a search option.

@) JASP Help — O ¥

Bayesian Independent Samples T-
Test

The independent samples t-test allows the user to estimate the effect
size and test the null hypothesis that the population means of two
independent groups are equal.

Assumptions

+« Continuous dependent variahle.

s The observations in both groups are a random sample from
the population.

« The dependent variable is normally distributed in both
populations.

+ The population variances in the two groups are
homogeneous.

Input

Search for:

17 |Page
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DESCRIPTIVE STATISTICS

Presentation of all the raw data is very difficult for a reader to visualise or to draw any inference on.
Descriptive statistics and related plots are a succinct way of describing and summarising data but do
not test any hypotheses. There are various types of statistics that are used to describe data:

Measures of central tendency
Measures of dispersion

Percentile values
Measures of distribution
Descriptive plots

In order to explore these measures, load Descriptive data.csv into JASP. Go to Descriptives >
Descriptive statistics and move the Variable data to the Variables box on the right.

Y & Gowp | N variabe | ==
1 Group 1 26.4
3 Group 1 8.4
3 Group 1 85
4 Group 1 229
5 Group 1 17
6 Group 1 14.1
7 Group 1 138
a Group 1 15
9 Group 1 205
i0 | Group1 217
11 Group 1 323
12 | Group1 9.7

& Group

Variables

3 % Variable

Split

The Statistics menu can now be opened to see the various options available.

¥ Statistics

Percentile Values

Quartiles
Cut points for

Percentiles:

Dispersion

5. E. mean
MAD

IQR

Range

Maxirmum

: 4

equal groups

Std.deviation

MAD Robust

Variance

Minimum

Central Tendency
Mean

Median
Mode
5um
Distribution
Skewness
Kurtosis

Shapiro-Wilk test

JASP — Bayesian Inference. Dr Mark Goss-Sampson
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CENTRAL TENDENCY.

This can be defined as the tendency for variable values to cluster around a central value. The three
ways of describing this central value are mean, median or mode. If the whole population is considered,
we the term population mean / median/mode is used. If a sample/subset of the population is being
analysed the term sample mean/ median/mode is used. The measures of central tendency move
toward a constant value when the sample size is sufficient to be representative of the population.

In the Statistics options make sure that everything is unticked apart from mean, median and mode.

Cescriptive Statistics
Central Tendency -
Yariable
Mean

Median U;hd_ 210
Missing 0
Mode Mean 17.71
sum Median 17.90
Mode 20.00

The mean, M or X (17.71) is equal to the sum of all the values divided by the number of values in the
dataset i.e. the average of the values. It is used for describing continuous data. It provides a simple
statistical model of the centre of distribution of the values and is a theoretical estimate of the ‘typical
value’. However, it can be influenced heavily by ‘extreme’ scores.

The median, Mdn (17.9) is the middle value in a dataset that has been ordered from the smallest to
largest value and is the normal measure used for ordinal or non-parametric continuous data. Less
sensitive to outliers and skewed data

The mode (20.0) is the most frequent value in the dataset and is usually the highest bar in a distribution
histogram

DISPERSION
In the Statistics options make sure that the following options are ticked
Dispersian
5. E. mean Std.deviation
MAD ¥4 MAD Robust
IR Variance
Range Minimum
Maximurm

Standard deviation, S or SD (6.94) is used to quantify the amount of dispersion of data values around
the mean. A low standard deviation indicates that the values are close to the mean, while a high
standard deviation indicates that the values are dispersed over a wider range.

19 |Page
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Variance (S* = 48.1) is another estimate of how far the data is spread from the mean. It is also the
square of the standard deviation.

The standard error of the mean, SE (0.24) is a measure of how far the sample mean of the data is
expected to be from the true population mean. As the size of the sample data grows larger the SE
decreases compared to S and the true mean of the population is known with greater specificity.

MAD, median absolute deviation, a robust measure of the spread of data. It is relatively unaffected
by data that is not normally distributed. Reporting median +/- MAD for data that is not normally
distributed is equivalent to mean +/- SD for normally distributed data.

MAD Robust: Median absolute deviation of the data points, adjusted by a factor for asymptotically
normal consistency.

IQR - Interquartile Range is similar to the MAD but is less robust (see Boxplots).
Variance: Variance of the data points

Credible intervals (Cl), although not shown in the general Descriptive statistics output, these are used
in many other statistical tests. They are an important concept when looking at Bayesian inference and
are somewhat similar to confidence intervals used in frequentist statistics although their meaning is
very different.

Bayesian analyses produce a posterior distribution of the possible effect values. A 95% credible
interval is simply the central portion of the posterior distribution that contains 95% of the values i.e.
given the observed data, the effect has a 95% probability of falling within this range.

Prior and Posterior

data|H1
BF0=7.256 median = 0.681
BFy1=0.138 95% Cl: [0.142, 1.253]
data|HO
2.0
— Posterior
--- Prior —
1.5 4

Density

2.0 -1.0 0.0 1.0 2.0
Effect size o
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QUARTILES
In the Statistics options make sure that everything is unticked apart from Quartiles.

Percentile Values
Quartiles

Cut points for:

Percentiles:

4

equal groups

Descriptive Statistics

“ariahle
Yalid 210
Missing 0
25th percentile 13.05
50th percentile 17.80
T5th percentile 22.30

Quartiles are where datasets are split into 4 equal quarters, normally based on rank ordering of

median values. For example, in this dataset

1)1][2]2]3]3

4

4

4

4

5

67| 8 |

8 | 9

10| 10 | 10

25%

50%

75%

The median value that splits data by 50% = 50th percentile =5

The median value of left side = 25th percentile = 3

The median value of right side = 75th percentile = 8

From this the Interquartile range (IQR) range can be calculated, this is the difference between the 75th
and 25th percentilesi.e. 5. These values are used to construct the descriptive boxplots later. The IQR
can also be shown by ticking this option in the Dispersion menu.

JASP — Bayesian Inference. Dr Mark Goss-Sampson
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DESCRIPTIVE PLOTS IN JASP
JASP can produce a range of descriptive plots:

¥ Plots

Customizable plots
Color paletta  Colorblind v

Boxplots
Boxplot element Use color palette
Violin element Label Outliers
Jitter element

Scatter Plots
Graph above scatter plot
O Density
Histogram
None
Graph right of scatter plot
O Density
Histogram
None
Add regression line
O Smooth
Linear
Show confidence interval 95

Show legend

Basic plots
Distribution plots

Display density
Correlation plots

Q-Q plots
Pie charts

%

Again, using Descriptive data.csv with the variable data in the Variables box, go to the statistics

options and under Plots tick Distribution plots,

Distribution plots

Boxplots — Boxplot Element and Q-Q plots.

The Distribution plot is based on splitting the data into frequency bins, this is then overlaid with the

distribution curve. As mentioned before, the

highest bar is the mode (most frequent value of the

dataset. In this case, the curve looks approximately symmetrical suggesting that the data is
approximately normally distributed. The second distribution plot is from another dataset which shows

that the data is positively skewed.
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Boxplots

The boxplots visualise several statistics described above in one plot:

e Median value

e 25 and 75% quartiles

e Interquartile range (IQR) i.e. 75% - 25% quartile values

e Maximum and minimum values plotted with outliers excluded
e Qutliers are shown if requested

Outlier
-

Maximum value

=  Top 25%
75% quartile -
Median value ™ IQR
25% quartile =

— Bottom 25%

Minimum value -
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Go back to the statistics options, in Descriptive plots tick both Boxplot and Violin Element, look at how
the plot has changed. Next tick Boxplot, Violin and lJitter Elements. The Violin plot has taken the
smoothed distribution curve from the Distribution plot, rotated it 90° and superimposed it on the
boxplot. The jitter plot has further added all the data points.

Boxplot + Violin plot Boxplot + Violin + Jitter plot

A Q-Q plot (quantile-quantile plot) can be used to visually assess if a set of data comes from a normal
distribution. Q-Q plots take the sample data, sort it in ascending order, and then plot them against
quantiles (percentiles) calculated from a theoretical distribution. If the data is normally distributed,
the points will fall on or close to the 45-degree reference line. If the data is not normally distributed,
the points will deviate from the reference line.

Q-Q Plot
Variable

4 -

Standardised Residuals
o
|

4 2 0 2 4
Theoretical Quantiles
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Scatter plots

JASP v0.12 introduced the ability to produce scatterplots of various types and to be able to include
smooth or linear regression lines. There are also options to add distributions to these either in the

form of density plots or histograms.

68 — 69 —
67 - 68 -
Q
66 67 -
66— o
65 —
65 — @
64 — o _
(=] 64 o
63 — 63 —
| I | 1 | | [
75 80 85 90 95 75 80
Pie charts

° 69 —
e 68 —
]

67 —
oo © " 66 —

o0 65 —
) 64 —
63 —

I
75

—

o fo] Og o
2 )
o 0.
o
- )
o] Qoo o

Also introduced was the ability to plot piecharts when working with categorical or other frequency

data.

Surface
0/100

Plot colour palettes

Users can choose from between 5 different colour
palettes using the drop-down menu

JASP — Bayesian Inference. Dr Mark Goss-Sampson

Surface
Astroturf
Clay
Grass

Inr’

Customizable plots
Color palette Colorblind

Boxplots
Boxplot element
Violin element
Jitter element

v

Use color palette
Label Qutliers
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SPLITTING DATA FILES
If there is a grouping variable (categorical or ordinal) descriptive statistics and plots can be produced

for each group. Using Descriptive data.csv with the variable data in the Variables box now add Group

to the Split box.

Variables
\ Yariable o e
Descriptive Stafistics
Variable
Group 1 Group 2
Valid 315 495
Mizsing 0 o
Mean 16.021 18.787
Median 15.800 19.400
MAD 4200 5.000
Minimurm 1.100 0.200
il | Maximum 35.800 36.8900
Split
&; Group o

= 2
g iz ‘
QL [1+]
o a
[ T T T | [ T T T |
0 10 20 30 40 0 10 20 30 40
Variable Variable
40
30+
Q
S 20
©
=
10
[}_
| |
Group 1 Group 2
Group
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EXPLORING DATA INTEGRITY

Sample data is used to estimate parameters of the population whereby a parameter is a measurable
characteristic of a population, such as a mean, standard deviation, standard error or confidence
intervals etc.

What is the difference between a statistic and a parameter? If you randomly polled a selection of
students about the quality of their student bar and you find that 75% of them were happy with it. That
is a sample statistic since only a sample of the population were asked. You calculated what the
population was likely to do based on the sample. If you asked all the students in the university and
90% were happy you have a parameter since you asked the whole university population.

Bias can be defined as the tendency of a measurement to over- or under-estimate the value of a
population parameter. There are many types of bias that can appear in research design and data
collection including:

e Participant selection bias —some being more likely to be selected for study than others

e Participant exclusion bias - due to the systematic exclusion of certain individuals from the
study

e Analytical bias - due to the way that the results are evaluated

However statistical bias can affect a) parameter estimates, b) standard errors and confidence intervals
or c) test statistics and p values. So how can we check for bias?

IS YOUR DATA CORRECT?

Outliers are data points that are abnormally outside all other data points. Outliers can be due to a
variety of things such as errors in data input or analytical errors at the point of data collection Boxplots
are an easy way to visualise such data points where outliers are outside the upper (75% + 1.5 * IQR)
or lower (25% - 1.5 * IQR) quartiles

« outlier

Max —— 3
Boxplots show:

— Top 25% e Median value

e 25 & 75% quartiles

e IQR —Inter quartile range

e Max & min values plotted
with outliers excluded

75% quartile

JL

— IQR e Outliers shown if requested
Median
0, 1 7
| 25% quartile | Bottorn
Min o 259%,
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Load Exploring Data.csv into JASP. Under Descriptives > Descriptive Statistics, add Variable 1 to the
Variables box. In Plots tick the following Boxplots, Label Outliers, and BoxPlot Element.

¥ Plots
Customnizable plots Basic plots
Color palette Colorblind b4 Distribution plots
Boxplots Display density
Boxplot element Use color palette Correlation plots
Violin element Label outliers Q-0 plots
Jitter element Pie charts
Scatter Plots
Graph above scatter plot
Density
Histogram
Mane

The resulting Boxplot on the left looks very compressed and an obvious outlier is labelled as being in
row 38 of the dataset. This can be traced back to a data input error in which 91.7 was input instead of
917. The graph on the right shows the BoxPlot for the ‘clean’ data.

12007 1050
1000 1000 T

— 800 _ 9907

€

8 600 t%; 2001

> 400 ,E w0

800

200 —
0- | 700- _|_
Total Total

How you deal with an outlier depends on the cause. Most parametric tests are highly sensitive to
outliers while non-parametric tests are generally not.

Correct it? — Check the original data to make sure that it isn’t an input error, if it is, correct it, and
rerun the analysis.

Keep it? - Even in datasets of normally distributed, data outliers may be expected for large sample
sizes and should not automatically be discarded if that is the case.
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Delete it? — This is a controversial practice in small datasets where a normal distribution cannot be
assumed. Outliers resulting from an instrument reading error may be excluded but it should be verified

first.

Replace it? — Also known as ‘winsorizing’. This technique replaces the outlier values with the relevant
maximum and/or minimum values found after excluding the outlier.

Whatever method you use must be justified in your statistical methodology and subsequent analysis.

WE MAKE MANY ASSUMPTIONS ABOUT OUR DATA.

When using parametric tests, we make a series of assumptions about our data and bias will occur if
these assumptions are violated, in particular:

e Normality
e Homogeneity of variance or homoscedasticity

Many statistical tests are an omnibus of tests of which some will check these assumptions.

ASSESSING THE ASSUMPTION OF NORMALITY
Normality does not mean necessarily that the data is normally distributed per se but it is whether or
not the dataset can be well modelled by a normal distribution. Normality can be explored in a variety

of ways:

e Numerically
e Visually / graphically
e Statistically

Using Exploring data.csv, go to Descriptives>Descriptive Statistics move Variables 2 and 3 to the
Variables box and in Plots tick Distribution plot. This will show the following two graphs:

N
\

/ N \__//_\

= S .

I I I [ I 1 I I T T T I 1
0 2 4 6 8 10 0 0.5 1 1.5 2 25 3
Variable 2 Variable 3

Density
AN
/
/
Density

It is quite easy to visualise that Variable 2 has a symmetrical distribution. Variable 3 is skewed to the
left.
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Another graphical check for normality is a Q-Q plot. These show the quantiles of the actual data

against those expected for a normal distribution.

If data are normally distributed all the points will be close to the diagonal reference line. If the points
‘sag’ above or below the line, there is a problem with kurtosis. If the points snake around the line,
then the problem is skewness. Below are Q-Q plots for Variables 2 and 3. Compare these to the

previous distribution plots.

Standardized Residuals

The following Q-Q plot scenarios are possible:
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Currently, there is no Bayesian equivalent of the Shapiro-Wilk test in JASP to check the assumption of
normality.

Testing the assumption of normality — A cautionary note!

For most parametric tests to be reliable, one of the assumptions is that the data is approximately
normally distributed. A normal distribution peaks in the middle and is symmetrical about the mean.
However, data does not need to be perfectly normally distributed for the tests to be reliable.

So, having gone on about testing for normality — is it necessary?

The Central Limit Theorem states that as the sample size gets larger i.e. >30 data points the
distribution of the sampling means approaches a normal distribution. So, the more data points you
have the more normal the distribution will look and the closer your sample mean approximates the
population mean.

However, data that does not meet the assumption of normality is going to result in poor results for
certain types of test (i.e. ones that state that the assumption must be met!). How closely does your
data need to be normally distributed? This is a judgment call best made by eyeballing the data.

WHAT DO | DO IF MY DATA IS REALLY NOT NORMALLY DISTRIBUTED?

Transform the data and redo the normality checks on the transformed data. Common transformations
include taking the log or square root of the data.

Use non-parametric Bayesian tests since these are distribution-free tests and can be used instead of
their parametric equivalent.
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DATA TRANSFORMATION

In some cases, it may be useful to compute the differences between repeated measures or, to make
a dataset more normally distributed, you can apply a log transform for example. When a dataset is
opened there will be a plus sign (+) at the end of the columns.

= ||

i | L B e
Descriptives T-Tests AMOVA Regression Frequencies
Y | #SGowp | Y variabler | % variable2 | % Variable3 I +

1 1 912 2.78 0.29 k

2 1 826 489 055

3 1 1004 6.79 0.47

4 1 982 b6.24 1.58

5 1 920 B.59 0.76

& 1 814 5.86 0.76

I’z\i'

Factor

Clicking on the + opens a small dialogue window where you can:

e Enter the name of a new variable or the transformed variable
e Select whether you enter the R code directly or use the commands built into JASP
o Select what data type is required

Create Computed Column

Mame: (-

%, Scale

R

W

40! Ordinal &\ Nominal & Text

Create

Once you have named the new variable and chose the other options — click create.
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If you choose the manual option rather than the R code, this opens all the built-in create and transform
options. Although not obvious, you can scroll the left and right-hand options to see more variables or
more operators respectively.

&G..p
wVar.el
“Var..e 2
“Var..e3
Q % Di.-3

et A% =< <> 2 AV

| =

0

Computed columns code dear(ed)

]
Oy
oy
Dy
[1v

W R

Compute column

? X

-

For example, we want to create a column of data showing the difference between variable 2 and
variable 3. Once you have entered the column name in the Create Computed Column dialogue
window, its name will appear in the spreadsheet window. The mathematical operation now needs to
be defined. In this case drag variable 2 into the equation box, drag the ‘minus’ sigh down and then

drag in variable 3.

&G..p

S Var.el
% Var..e 2
% Var.e3
% Di..-3

Diff 2-3

t-*r A% =< < >2AV | -

“Var..e2- % Var..e3

e

(0

Iyl
Oy

>y
Iy

R Compute column ? X
Y &Gouwp | % varablel | % variable2 | %, variable3 | %, fiDiff 23 +
1 |1 912 2.78 029
2 |1 826 4.89 055
3 |1 1004 6.79 047

If you have made a mistake, i.e. used the wrong variable or operator, remove it by dragging the item
into the dustbin in the bottom right corner.
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When you are happy with the equation/operation, click compute column and the data will be entered.

Diff 2-3
+-x =A% =< <>2AV | -
AG-p “Var.e2- % Var.e3 vl
“Var.el — Oy
% Var.e2 '@' Oy
“Var.e3 i Z-,r
“Di..-3 Computed columns code applied I_IY
R Compute column ? x
Y | fcoup | S variablel | % varable2 | % varable3 | % JfiDiff 2-3 e
1 |1 912 278 0.29 249
2 |1 826 4.89 055 434
3 |1 1004 679 047 6.32

If you decide that you do not want to keep the derived data, you can remove the column by clicking
the other dustbin icon next to the R.

Another example is to do a log transformation of the data. In the following case variable 1 has been
transformed by scrolling the operators on the left and selecting the log10(y) option. Replace the “y”
with the variable that you want to transform and then click Compute column. When finished, click the
X to close the dialogue.

Log10 Variable 1
4L A% =FELSS>2AV | -
log(Y)
aG.p

wVar.el log10( M Ver--& 1) log2(Y)
s Var.e2 s— log10(Y)
“Var.e3 MEJ logb(Y)
“ Log10...ble 1 Computed columns code applied exp(Y)
T R Compute column ? | x
Y |SGouwp | % variablel | %, variable2 | %, variable3 | %, fiLog10 Variable 1 -|-

1 1 912 2.78 029 2.95999

2 |! a2 4.89 0.55 2.91658

3 1 1004 6.79 0.47 3.00173
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The two graphs below show the untransformed and the logl0 transformed data. The obviously
skewed data has been transformed into a profile with a more normal distribution

Density

I T T | | | | |
0 0.5 1 1.5 2 2.5 3 3.5

Untransformed

Density

| 1 | | | | |
-2 -1.5 -1 -0.5 0 0.5

[N

Log10 transformed

The Export function will also export any new data variables that have been created.
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BAYESIAN INFERENCE METHODS

36|Page
JASP — Bayesian Inference. Dr Mark Goss-Sampson



SOME BAYESIAN TERMINOLOGY?

Bayesian Statistics

A statistical tool that can be used to combine background knowledge of population parameters with
current data to obtain estimates via the resulting posterior distribution.

Bayes Factor

Evaluates the conditional probability between two competing hypotheses. The aim is to quantify
support levels for each hypothesis, which can be updated as new information becomes available,
instead of generating definitive accept or reject hypothesis decisions.

Credibility Interval

The Bayesian version of the traditional confidence interval. Can be interpreted as the (e.g. 95%)
probability that the population parameter is between the particular upper and lower bounds
determined by the Bayesian credibility interval

Likelihood Function
Represents the observed data likelihood. This weights the prior distribution in Bayesian statistics to
obtain the posterior distribution from which we draw inferences.

Markov Chain Monte Carlo (MCMC)
A simulation-based estimation method that is used to make simulated draws from a distribution and
form a Markov chain that represents the posterior distribution.

Prior distribution

A statistical distribution that can be used to capture the amount of (un)certainty in a population
parameter. This distribution is then weighted by the sample data to obtain the posterior, which is used
to make an inference.

Prior odds
The odds of the outcome before the evidence is considered. These can be uninformative (assigning
equal probabilities to all possibilities) or informative based on previous findings/knowledge.

Posterior distribution
The distribution that is obtained once combining the prior and the likelihood in the Bayesian
estimation process.

Posterior odds

Posterior odds = Bayes factor x prior odds. From this formula, we see that the Bayes' factor (BF) tells
us whether the data provides evidence for or against the hypothesis

assigns equal probabilities to all possibilities

3 Adapted from Schoot, Rens & Depaoli, Sarah. (2014). Bayesian analyses: Where to start and what to report.
European Health Psychologist. 16. 75-84.
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GUIDELINES TO UNDERSTANDING PLOTS IN BAYESIAN ANALYSES

This section sets out to explain the meaning of the common plots seen in some of the Bayesian
analyses. More complex analyses such as Regression and two-way ANOVAs have their own specific
plots and will be dealt with in their individual sections.

Posterior and Prior Plots — parameter estimation.

Example plots for a two-sided (H1 # Ho) correlation and independent t-test are shown below (left and
right respectively). These plots provide information for parameter estimation, as well as hypothesis
testing.

In each case, the dotted line represents the prior, the probability distribution of the parameter under
the alternative hypothesis before actually seeing the data.

For a 2-sided correlation, the default stretched beta distribution states that any correlation coefficient
(rho: p) between -1, and 1 is possible, and is equally likely a priori, hence the uniform distribution. In
the case of hypothesis testing, the two rival hypotheses tested are Ho: p = 0 and H1: p # 0 (more
specifically: H: p ~ Uniform (-1, 1)).

For the 2-sided independent t-test, the prior is defined by a Cauchy distribution centred on a zero
effect size (6) and a width/scale of .707 (default in JASP). This distribution reflects our beliefs about
likely values of the population parameter, before seeing the data. The prior distribution depicted
below reflects the belief that values of the effect size close to 0 are relatively plausible, whereas values
greater than 1 are less plausible.

data|H1 data]H1
BF 1y = 84.504 median = 0.580 BFio=8.835 median = 1.007
BFg1=0.012 95% Cl: [0.206, 0.792] BFg1=0.113 95% CI: [0.205, 1.928]
data|HO data|HO
4.0 - 1.2
—— Posterior — Posterior | |
..... Prior P 1.0  --- Prior I 1
_E'-.
‘B
=
[
(]
.............................. 0 LT T LT T [rtypappaps [
I I | | | | | | |
-1 075 -05 -025 0 025 05 075 1 -2.0 -1.0 0.0 1.0 2.0
Population correlation p Effect size &

In the case of hypothesis testing, the two rival hypotheses tested are Ho: 6 =0 and H1: & # 0 (more
specifically, H1: 6 ~ Cauchy (0.707)).

The solid lines show the posterior distribution (which is conditional on H1 being true), i.e. the updated
probability distribution of the parameter of interest after seeing the data. The horizontal bar
represents the 95% credible intervals around the median correlation or effect size.
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The two grey dots indicate the density values of the two distributions where the parameter of interest
is equal to the point of testing (e.g., 0 for the correlation or effect size). The ratio of these two values
is called the Savage-Dickey density ratio, which gives the BFio and BFo; values (also shown above),
depending on which way around the division is done. Visually, if the grey dot of the posterior
distribution is lower than that of the prior distribution the evidence supports the alternative
hypothesis and v.v.

Posterior and Prior Plots — hypothesis testing.

The initial results above are based on two-sided non-directional alternative hypotheses. Bayesian tests
also enable one-sided directional hypotheses to be tested. To test the associated one-sided
hypothesis, you can specify “Correlated positively”, and “Group 1 > Group 2”. The new prior— posterior
plots are shown below (left and right respectively).

data|H+ data|H+

BF.p=168.951 median = 0.580 BF. = 17.551 median = 1.022
BFo. =0.006 95% CI: [0.296, 0.792] BF. = 0.057 95% Cl: [0.227, 1.902]
datalHO data|HO
5.0 -
—— Posterior — Posterior
404 Prior --- Prior
—
2 3.0 O
7] 1
o
8 20
1.0
0.0 -
| I | | | | | | | | I | I | |
-1 075 05 -025 0 025 05 075 1 2.0 -1.0 0.0 1.0 2.0 3.0
Population correlation p Effect size

Now the prior distribution densities are concentrated to the right of 0 in each case, reflecting the
directionality of the alternative hypothesis. Both Bayes factors have increased in magnitude,
compared to the two-sided tests, thus favouring the alternative directional hypotheses (H+).

How strong is the evidence?

Different descriptive classifications have been used to interpret Bayes factors. The one adopted by
JASP is an adaption of Jeffery’s scheme that proposes a series of labels for which specific Bayes factor
values can be considered either “anecdotal”, “moderate”, “strong”, “very strong”, or “decisive”
relative evidence for a hypothesis.
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‘ In favour of

BF1o ‘ Log. BF10 ‘ Evidence
>100 >4.6 Decisive
30to 100 3.4t04.6 Very strong
10 to 30 23to 34 Strong

3to 10 1.1to2.3 Moderate
1to3 Oto1.1 Anecdotal
1 0 No evidence
1to 0.33 Oto-1.1 Anecdotal
0.33t00.1 -1.1to-2.3 Moderate
0.1t00.033 -2.3to -34 Strong
0.033t00.01 -3.4t0-4.6 Very strong
<0.01 <-4.6 Decisive

Alternative hypothesis
Alternative hypothesis
Alternative hypothesis
Alternative hypothesis
Alternative hypothesis
Neither

Null Hypothesis

Null Hypothesis

Null Hypothesis

Null Hypothesis

Null Hypothesis

However, these are merely a simplified heuristic for interpreting Bayes factors, but that the Bayes

factor really is a continuous metric of evidence.

The pizza plots show the transformed odds of two Bayes factors (between 0 and 1). This allows the
strength of evidence for each Bayes factor to be easily visualised®.

Evidence for H,,

Evidence for H,

+

2
Al

Fio=5 BFp=5 BF=3 BF-= BF1g = BF10 =10 BFy =

Strong  Moderate  Weak/inconclusive ~ Moderate  Strong

4Van Doorn J et al (2019 ) The JASP Guidelines for Conducting and Reporting a Bayesian Analysis.

https://psyarxiv.com/yqgxfr
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Bayes factor robustness checks

Bayes factors are known to be sensitive to how the prior distribution is specified. For the analysis to
be “robust”, Bayes factors should be relatively consistent over a range of different prior specifications.
The robustness analysis for the one-sided correlation analysis is shown below:

e max BF.g: 173.751 atr=0.7035
o user prior: BF.;=168.951

1000
1‘ Evidence for H+
200

100

30 {[- £}

BF-rD

10 —

34

J| Evidence for HO

13 -

r | T T 1
0 0.5 1 15 2
Stretched beta prior width

For the “positively correlated” alternative hypothesis (BF.o), the robustness analysis computes BF.o
values for all prior shape parameters between 0 and 2. This shows to what extent the Bayes factor
fluctuates based on the prior specification. Except for very small prior widths (i.e., very
extreme/informative prior specifications), there is very little change in BF+0 which consistently
supports “extreme” evidence for the alternative hypothesis over the null.

In terms of the Cauchy distribution, if the location is maintained as being centred on 0, changing the
prior width (scale) changes the shape of the distribution. An example of this is shown below. Note
that the default Cauchy prior is set to 0.707. This scale parameter for the Cauchy distribution works as
follows: 50% of the probability mass is situated between -(scale) and +(scale). For instance, a Cauchy
distribution with scale = 1.5 will have 50% of its probability mass between -1.5 and 1.5.

0.7

0.6 4 __ scale=0.5
__scale=1

0.5 4
__ scale =2

0.4 4

0.3 4

0.2 4

0.1 4

0
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The robustness test for the one-sided independent t-test is shown below. As can be seen, the Bayes
factors are calculated over a range of prior width values from 0 to 1.5. The analysis also provides BF.o
values over a selection of 4 prior widths (max: maximum attainable Bayes factor, user: user-specified
prior, wide: width of 1, and ultrawide: 1.4). As with the correlation example, except for very small
prior widths, the BF.o values consistently show strong evidence in support of the alternative
hypothesis.

o max BF .y 18.378atr=1.019
e wide prior: BF.,;=18.374
o ultrawide prior: BF.o=17.679
© Uuser prior: BF .o =17.551
100 5 -==-=====--mmmeme e eceemcmmooooooonaos =
T Evidence for H+ Very strong
30 - -
Strong m
=] ‘1U = — E.
W Moderate &
m o |
3 - ~ (]
Anecdotal ®
-1 1 -
,|, Evidence for HO Anecdotal
13 = -
| | 1 | | 1 |
0 025 05 075 1 125 15
Cauchy prior width

Sequential Analyses

The sequential analyses for the correlation and independent t-tests are shown below (left and right
respectively). This shows the sequential development of the evidence as the data accumulate.

100000 — 30 ) B
A Evidence for H; A Evidence for H; Strong
10000 — 10 - -
1000 - ) Moderate m
o o 3 - 5 @ = g-
- | - o0 o
W 100 L 1 .o° 0 o0 Anecdotal @
il | eeo————of oo —— - o
10 Anecdotal o
1- 1/3 -
J Evidence for Hy { Evidence for Hy Moderate
1/10 -
\ T T ' ! ' ' 1/10 - | | | [ I B
0 5 10 15 20 25 30 0 5 10 15 20 25
n

n

Sequential analysis is generally only of interest in monitoring the sampling plan in the original research
design. For example, to either stop collecting data after a set number of trials or when a pre-defined

Bayes factor is achieved.
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BAYESIAN ONE SAMPLE T-TEST

Research is normally carried out in sample populations, but how close does the sample reflect the
whole population? The Bayesian one-sample t-test determines whether a sample mean is the same
or different from a known or hypothesized population mean.

The 2-sided null hypothesis (H,) tested is that the effect size (8) = 0 while the alternative hypothesis
is that the effect size # 0

ASSUMPTIONS
Three assumptions are required for a one-sample t-test to provide a valid result:
e The test variable should be measured on a continuous scale.
e The test variable data should be independent i.e. no relationship between any of the data
points.
e The data should be approximately normally distributed
e There should be no outliers in the differences between the 2 groups.
The last two assumptions should be checked by doing a descriptives analysis.

RUNNING THE BAYESIAN ONE SAMPLE T-TEST

Open One sample t-test.csv, this contains two columns of data representing the height (cm) and body
masses (kg) of a sample population of males used in a study. In 2017 the average adult male in the UK
population was 178 cm tall and has a body mass of 83.6 kg.

Go to T-Tests > Bayesian One-Sample t-test and in the first instance add height to the analysis box on
the right. Then tick the following options and add 178 as the test value:

Test value: 178 Plots
Prior and posterior

Alt. Hypothesis
Additional info

O + Test value
Bayes factor robustness check
> Test value
Additional info
< Test value
Sequential analysis
Elags SR Robustness check
BFio
Descriptives
BFo1
Credible interval 95.0 %%
Log(BF1a)
Tests Additional Statistics
O student Descriptives

Wilcoxon signed-rank

Missing Values

) Exclude cases per dependent variable

Exclude cases listwise
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UNDERSTANDING THE OUTPUT
The output should contain two tables and four graphs.

The results show that the BF favouring the alternative hypothesis, that data is not equal to the test
value, is less than one. Switch the Bayes factor from BFio to BFo; which will report in favour of the
null hypothesis.

Bayesian One Sample T-Test Bayesian One Sample T-Test
BFu error % ‘ BF.. arror %
height 0.234 0.034 height 4.279 0.034
Note. For all tesis, the alternative Note. For all tests, the alternative
hypothesis specifies that the population hypothesis specifies that the population
mean iz different from 173, mean is different from 178.

As BFo; =4.28, this indicates the null model is 4.28 more favoured than the alternative model, given
the data. Not only does this provide moderate evidence for Hy relative to H; — something not
possible with p-values — but it also describes the magnitude of this evidence.

If the data is not normally distributed, JASP provides the option to run the Wilcoxon signed-rank test
instead of the default Student test.

Descriptives

95% Credible Interval
M Mean sD SE Lower Upper

height 23 177.609 4.915 1.025 175483 179.734

The descriptive data shows that the mean height of the sample population was 177.6 cm compared
to the average 178 cm UK male. This is shown graphically with the mean £ 95% credible intervals
below.

height
180

178 —f-mmmmmmmrmomeofe e

175
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The posterior — prior plot shows that the posterior distribution is centred very close to an effect size
of 0 (median =-0.006) with the pizza plot favouring the data under the null rather than the alternative

hypothesis.

The robustness test also shows evidence in favour of the null hypothesis with a range of prior widths.

data|H1
BF0=0.234 median = -0.068
BFgy1=4.279 95% CI: [-0.453, 0.306]
data|HO
25 4
] — Posterior
2.0 4 --= Prior

0.0
Effect size &

30

10 -

e max BFg:
© user prior: BFg1=4.279
e wide prior: BFy1=5.828

ultrawide prior: BFg, =8.067

Q

T Evidence for HO

0.998 at r = 0.0005

Strong

Moderate

Anecdotal

l Evidence for H1

Anecdotal

0

T T T T
025 05 075 1

Cauchy prior width

1.25 15

Repeat the procedure by replacing height with mass and change the test value to 83.6 and test for the

alternative hypothesis # test value.

20uspIAg

Bayesian COne Sample T-Test Descriptives
EF:c error % 95% Credible Interval
mass 51312 238 7 779 -8 M Mean sD SE Lower Upper
Nate. For all tests, the alternative mass 23 72913 7.025 1.485 69875 75951

hypothesis specifies that the population
mean is different from 832.6.

The Bayes factor is reported as 61312, i.e. the data is 61312 times more likely under the alternative
hypothesis than the null. The mean weight of the participants (72.9 kg) is less than the test value

defined (83.5 kg).

mass

848

68.0 -
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Re-run the test changing the alternative hypothesis < test value.

Bayesian One Sample T-Test

BF- error %

mass 122624.560 MaM

MNate. For all tests, the alternative
hypothesis specifies that the mean is less
than 83.6.

It can now be seen that the Bayes factor extreme evidence in favour of the alternative hypothesis with
the data being 122,625 times more likely than under the null hypothesis.

e max BF g 152424 806 at r=1.4436
data|H- o ultrawide prior: BF o= 152395.525
BF .o = 122624.560 median = -1.438 * wide prior: BF o= 143503.525
BFg.=0.000 95% Cl: [-2.036, -0.873)] O user prior: BF ;= 122624.560
data|HO 1@H)7 o =—-===-=----emeemmaeemmccmeamcammcmeeaaaa
2.0 4 A Evidence for H-
— Posterior 1e+06 -
=== Prior 100000 —
1.5 —
10000 -
o
TR -
o 1000
100 -
10 =
'1 -
¥ Evidence for HO
1110 -

f T T T T T 1
0 0.25 0.5 0.75 1 1.25 1.5

Cauchy prior width

T T T 1
-3.0 -2.0 -1.0 0.0 1.0 2.0

Effect size &

REPORTING THE RESULTS

A 2-sided Bayesian one-sample t-test comparing the sample population height (177.6 cm) to the UK
adult norm (178 cm) returns a BFe of 4.3 indicating moderate evidence in favour of the null
hypothesis. This means that the data is 4.3 times more likely to have occurred under the null than
under the alternative hypothesis.

A one-sided Bayesian one-sample t-test, where Hs is less than the test value, comparing the sample
population mass (72.9 kg) to the UK adult norm (83.6 kg) returns a BFio of 122,625 indicating decisive
evidence in favour of the alternative hypothesis. This means that the data 122,625 times more likely
to have occurred under the alternative than under the null hypothesis.
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BAYESIAN BINOMIAL TEST

The binomial test is effectively a non-parametric version of the one-sample t-test for use with
dichotomous (i.e. yes/no) categorical datasets. This tests whether the sample differs from a known or
hypothesized population proportion (test value).

The null hypothesis (H,) postulates that the population proportion is equal to the test value.

The alternative hypotheses that can be tested are:
e # Test value: Two-sided alternative hypothesis that the population proportion is not equal to
test value.
e > Test value: One-sided alternative hypothesis that the population proportion is larger than
the test value.
e < Test value: One-sided alternative hypothesis that the population proportion is smaller than
the test value.

If a one-sided test is requested, the BFi, (or BFo;): Bayes factor is denoted as:

e BF+0: Bayes factor that quantifies evidence for the one-sided alternative hypothesis that the
population proportion is larger than the test value, relative to the null hypothesis.

e BF-0: Bayes factor that quantifies evidence for the one-sided alternative hypothesis that the
population proportion is smaller than the test value, relative to the null hypothesis.

e BFO+: Bayes factor that quantifies evidence for the null hypothesis, relative to the one-sided
alternative hypothesis that the population proportion is larger than the test value.

e BFO-: Bayes factor that quantifies evidence for the null hypothesis, relative to the one-sided
alternative hypothesis that the population proportion is smaller than the test value.

ASSUMPTIONS

Three assumptions are required for a binomial test to provide a valid result:
e The test variable should be on a dichotomous scale (such as yes/no, male/female etc.).
e The sample responses should be independent

RUNNING THE BINOMIAL TEST

Open Bayesian binomial.csv, this contains one column of data showing the number of students in a
first-year class using either an iPhone or another smartphone. In August 2019, when comparing
smartphone ownership in the UK, the market share of the iPhones was 47%.°

Go to Frequencies >Bayesian Binomial test. Move the Smartphone variable to the data window and
set the Test value to 0.47 (47%). Also, tick all plot options.

5 https://www.statista.com/statistics/271195/apple-ios-market-share-in-the-united-
kingdom-uk/
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¥ Bayesian Binomial Test

Test value: 0.47
Alt. Hypothesis Plots
O + Test value Prior and posterior
> Test value Additional info
< Test value Sequential analysis
Descriptive plots
Credible interval 95
Bayes Factor Priar
) BFis Beta prior: parametera 1
BFo1 Beta prior: parameter b 1
Log(BF10)

* & Smartphone

Yo

The following table and graph show that the proportions of both smartphones were 59% and 41% for
iPhones and other makes, respectively, in the student cohort compared to the market proportions

being 47% and 53%.

Bayesian Binomial Test

Level Counts Total Froportion BF.
Smartphone IPhone 53 a0 0589 1.657
Other ar a0 0411 0.242
MNote. Propartions tested against value: 0.47.
Mac Windows
1.00- 1.00+
086—F------------ 086—f------------
0.00- 0.00-

Mac
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For a 2-sided test, the Bayes factors show that for the iPhone proporti
evidence to accept or reject the null hypothesis (BFio = 1.657).

This can be further visualised in the pizza plots presented with the Prior an
grey dots indicate the density values of the two distributions at the test val

on there was insufficient

d Posterior plots. The two
ue. The ratio of these two

values is called the Savage-Dickey density ratio, which gives the BFio and BFo: values (also shown
above), depending on which way around the division is done. Visually, if the grey dot on the posterior

distribution is higher than that on the prior distribution the evidence suppo
vice versa.

Smartphone - IPhone Smartphone - Other

Prior and Posterior Prior and Posterior

rts the null hypothesis and

data | H1 data | H1
BF10=1.657 Median: 0.588 BF;o=0.242 Median: 0.412
BFgy1=0.604 95% CI; [0.485, 0.685] BFp1=4.126 95% CI: [0.315, 0.515]
data | HO data | HO
8 | 8 — | e |
—— Posterior —— Posterior
36‘ ---- Prior -- - Prior
e
o 47
a
2 -
0 _
] | | I T ] I T T | T 1
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
Population proportion 6 Population proportion 6
Smartphone
IPhone Other
1.00 1.00
047 --~-r¥rece-- 047 -====f======
0.00- 0.00-
| |
IPhone Other
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ONE-SIDED TESTING.

This can be followed up with one-sided hypothesis testing i.e. is the proportion of iPhones used in
class (58.9%) greater than the expected UK market proportion of 47%? To do so, change the
alternative hypothesis to > Test value.

Eayesian Binomial Test

Level Counts Total Proportion ]
Smariphone IFPhone &3 40 0.539 3.088
Other ar a0 0411 0.061
Note. For all tests, the alternative hypothesis specifies that the proportion is greater

than 0.47.

The results show that there is only moderate evidence in support of the one-sided alternative
hypothesis that the proportion of student iPhone users is higher than the UK market sales proportion.

Prior and Posterior

data | H+
BF.;=3.088 Median: 0.588
BF.=0.324 95% CI: [0.494, 0.685]
data | HO
8 - i
—— Posterior
> 6 ---- Prior
.
o 4
(]
2 —
G |

[ T T T T |
0 0.2 0.4 0.6 0.8 1

Population proportion

REPORTING THE RESULTS
The UK market proportion of iPhone and other smartphone users was reported to be 47% and 53%
respectively. In a cohort of University students (N=90) this proportion was found to be 58.9% and

41.1%.

Are these young students more susceptible to the glossy Apple marketing machine than the normal
population? A one-sided Bayesian Binomial test based on the alternative hypothesis that the
proportion of student iPhone users was higher than in the general population when the market
proportion was carried out. The resulting BF was 3.09 which only provides anecdotal/moderate
evidence favouring the alternative hypothesis.
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BAYESIAN MULTINOMIAL TEST

The multinomial test is effectively an extended version of the Binomial test for use with categorical
datasets containing three or more factors. This tests whether the sample distribution is different from
a hypothesized population distribution (multinomial test) or a known distribution (Chi-square
‘goodness-of-fit’ test).

The null hypothesis (H,) is that the sample counts are generated by a specified set of population
proportions. The alternative hypothesis (H;) is that the sample counts are not generated by those
population proportions.

ASSUMPTIONS

Three assumptions are required for a multinomial test to provide a valid result:
e The test variable should be a categorical scale containing 3 or more factors
e The sample responses should be independent

RUNNING THE MULTINOMIAL TEST

Open Bayesian Multinomial.csv. This contains three columns of data including the number of
different coloured M&Ms counted in a total of five bags (observed). Without any prior knowledge, it
could be assumed that the different coloured M&Ms are equally distributed. Therefore, the priors are
all set to be equal i.e. 1.

Go to Frequencies > Bayesian Multinomial test. Move colour of the M&Ms to Factor and the observed
number of M&Ms to counts. Tick Descriptives and Descriptives Plots.

¥ Bayesian Multinomial Test 9000
4l Expected . Fa;torc I
= olour
Counts
.= a1l Observed

Expected Counts

>
Test Values
© Equal proportions
Expected proportions
Bayes Factor Display
O BFio O Counts
BFos Proportions
LOg(BF:u) Plots
Additional Statistics Descriptives plot
Descriptives Credible interval 95.0 %

o

Credible interval  ©
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As can be seen in the Descriptive table, the test assumes an equal expectation for the proportions of
coloured M&Ms (36 of each colour). The Multinomial test results show a BF1o of 2512 suggesting that
the data are 2512 times more likely under the alternative hypothesis than the null hypothesis.

Bayesian Multinomial Test

Use the Display options to switch
between either counts or proportions

Levels BF
Multinomial G 2512077
Descriptives Descriptives
Colour Observed Expected: Multinomial Colour CObserved Expected: Multinomial
Elue Ky | 3G Blue 0.142 0.167
Brown 63 i Brown 0.288 0.167
Green 43 3G Gresn 0.196 0.167
Orange 19 i Crange 0.087 0.167
Red 4 3G Red 0.187 0.167
Yellow 22 i Yellow 0.100 0.167
Blue — 1 Blue - ; i
Brown - | Brown - A
’g Green — Green —t
8 Orange — T Orange — —t—
Red — T Red - T
Yellow — L Yellow — ——
[ T I I I T I T
0 20 40 60 80 0.0 0.1 0.2 0.3 0.4

Observed Counts

Observed Proportions

In 2008, Mars, the manufacturers of M&Ms changed the colour distribution to the following.

Colour Blue

Brown

Green

Orange

Red

Yellow

Proportion | 24

13

16

20

13

14

Sometime later, the proportions were removed from the manufactures web site and have not been

restored since.

These last published values will now be used as the expected counts, so move the

Expected variable to the Expected Counts box. As can be seen in the Descriptives table, JASP has
calculated the expected numbers of the different coloured M&Ms based on the manufacturers
reported production ratio. The results of the test result in a BFi of 4.3 * 10%° and provide decisive
evidence in favour of the alternative hypothesis where the observed counts of M&Ms are not
generated by the last proportions stated by the manufacturer.

JASP — Bayesian Inference. Dr Mark Goss-Sampson
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Bayesian Multinomial Test

Levels BF

Expected ] 4.332e+10

Descriptives

Colour Observed Expected: Expected

Blue 0.142 0.240
Brown 0.288 0.130
Gresn 0.19a 0180
Crange 0.087 0.200
Red 0.187 0.130
Yellow 0.100 0.140

MULTIPLE HYPOTHESES

JASP also provides another option whereby different hypotheses can be run at the same time. Go back
to the Options window and only add Colour to the Factor and Observed to the Counts boxes, remove
the expected counts if the variable is still there. In Test values, tick Expected proportions. This will
open a small spreadsheet window showing the colour and H, (a) with each cell have 1 in it. This is
assuming that the proportions of each colour are equal (multinomial test).

In this window, add another column which will automatically be labelled H, (b). The expected
proportions of each colour can now be typed in.

Test Values
Egual proportions (multinomial test)
) Expected proportions (x® test)
Ha (2) Ha (b) Add Column
Blue |1 24 Delete Column
Brown |1 13 Reset
Green |1 16
Orange | 1 20
Red |1 13
Yellow |1 14

Now when the analysis is run, the results of the tests for the two hypotheses are shown. H, (a) is the
null hypothesis that the population counts are equal, while H, (b) is the null hypothesis that the
population counts are the same as those specified by the manufacturer. As can be seen, the Bayes
factors reject both null hypotheses decisively.
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Bayesian Multinomial Test

Levels BF.s
H (a) G 2512.077
Ha (b) G 4 332e+10
Descriptives
Expected

Colour Observed

Hs (a) Ho ()

Blue 0.142
Brown 0288
Gresn 0.196
Qrange 0.087
Red 0.187
Yellow 0100

0167 0.240
0167 0.130
0167 0160
0167 0.200
0167 0130
0167 0.140
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BAYESIAN INDEPENDENT SAMPLES T-TEST

Like its frequentist counterpart, the Bayesian Independent t-test test is used to determine if there is a
difference between two independent groups. The test requires a continuous dependent variable (i.e.
weight loss following a 4-week diet) and an independent variable comprising 2 groups (i.e. males and
females). The two hypotheses tested are:

Ho: males and females have similar weight loss (i.e. effect sizes for each group are equal (6 = 0))

Hi: males and females have different weight loss (i.e. effect sizes for each group are not equal
(6 =0))

ASSUMPTIONS

Group independence:

Both groups must be independent of each other. Each participant will provide one data point for one
group only. For example, participant 1 can only be in either a male or female group — not both.

Normality of the dependent variable:

The dependent variable should also be measured on a continuous scale and be approximately
normally distributed with no outliers. This can be checked visually using the Q-Q plots.

If normality is violated you can try transforming the data (for example log values, square root values)
or, and if the group sizes are very different, use the Mann-Whitney U test which is a non-parametric
equivalent that does not require the assumption of normality (see the end of this chapter).

Homogeneity of variance:
The variances of the dependent variable should be equal in each group. This can be tested using
Levene's Test of Equality of Variances.

Open Bayesian Independent t-test.csv into JASP. Go to Descriptives and look at Weight loss split by
gender. Check for outliers and normal distribution (Shapiro-Wilk). In this case, the data looks like the
assumptions have been met.

Weight loss
Descriptive Statistics 15
Weight loss -1
Females Males " 10
w
Valid 42 45 L |
Missing 0 0 5 57
Mean 6920 3720 2 e
Std. Deviation 2242 2538 0
Shapiro-Wilk 0.963 0.971 1
P-value of Shapiro-Wilk 0232 0.310
Minimum 1.600 -2.100 -5-
Maximum 12.200 8500 Females Males
Gender
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RUNNING THE ANALYSIS

Go to T-Tests > Bayesian Independent Samples t-test. Move the weight loss variable into the
dependent variable and Gender into the Grouping variable on the right. In the first instance, tick
v the hypothesis to be the alternative hypothesis (Group 1 # Group 2)
BF1o

v
v Descriptives
v Descriptive plots

¥ Bayesian Independent Samples T-Test ®© 00
Dependent Variables
> % Weight loss

Alt. Hypothesis
O Group 1 # Group 2
Group 1 > Group 2
Group 1 < Group 2

Grouping Variable
" & Gender

Plots
Prior and posterior

Bayes factor robustness check

Bayes Factor Sequential analysis
o BFio
BF:
o Descriptives
Loa(BF
00(BF10) Credible interval 95 %
Tests Missing Values
O student O Exdude cases analysis by analysis
Mann-Whitney Exclude cases listwise

MNo. samples | 1000

Additional Statistics
Descriptives

UNDERSTANDING THE OUTPUT
The tables below show the Bayes factors for both BFio and Log BFo.

Bayesian Independent Samples T-Test

BFio Log(BF o)
‘Weight loss 4423465.504 Weight loss 13.000 G421e-0
. . Likelihood of data given the alternative hypothesis ()
The BFy value is the ratio of the Likelihood of data given the null hypothesis ()
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In this case, the data are 442346 times more likely under the alternative hypothesis (H;) than the null
hypothesis. The error % is based on the accuracy of the Bayes factor calculations, if this is less than
10% this can be ignored. Using Jeffrey’s criterion, this is decisive evidence in favour of the alternative
hypothesis although the Bayes factor is non-directional (unlike the t statistic) in that it does not show

how they differ.

This can be seen in the Descriptives table where weight loss is higher in females compared to males.

Group Descriptives

95% Credible Interval

Group M IMean 5D SE Lower Upper
Weight loss Females 42 5.220 2.242 0.346 6.230 T.B27
iales 45 3.720 2588 0.386 2.942 4493
8 =
w
wh
=)
=
>
@
=
2 =
| 1
Females IMales
Gender

FURTHER CHECKS
Go back to the statistical options and tick all the Prior and Posterior, as well as the Bayes factor

robustness check options:

Plots
Prior and posterior
Additional info
Bayes factor robustness check
Additional info
Sequential analysis
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Effect size &

The dashed line shows the prior distribution and the solid line the posterior distribution (based on the
dataset). The posterior distribution is shifted to the right over large positive effect sizes. Each of the
distributions has a grey dot at the 0.0 effect size. If the dot on the prior distribution is higher than the
one on the posterior distribution, then the Bayes factor supports the alternative hypothesis.

datalH1

median = 1.258
95% CI: [0.786, 1.747]

datalH0

Bayes factors supporting the alternative / null hypothesis (BF1o) and null/alternative hypothesis (BFo).
The pizza plot distribution shows the proportion of evidence for the H; (red) and Ho (white) hypothesis.
In this example, the pizza plot is completely red. The median effect size of 1.258 and 95% credible

intervals are also shown.

© USEer prior; BF,; =Inf
o max BFqg: 513175329 atr=1.2595
o ultrawide prior: BF;;=510024 272
s wide prior: BF,;=500638 676
1e+07
4 Evidence far H1
1e+06 - . —
100000 -
10000 ~
[}
L. 1000 -
oM
100 -
10
1 -
¥ Evidence for HO
110 -

| | 1 | | 1 |
0 025 05 075 1 125 15
Cauchy prior width

58| Page
JASP — Bayesian Inference. Dr Mark Goss-Sampson



The width (uncertainty) of the prior distribution is set as 0.707 by default in JASP. This graph shows a
range of prior widths, which in this case are relatively consistent and do not greatly change the BFio
value with all values being over 100. Therefore, it can be concluded that this test is robust to changes
in the prior width.

REFINING THE HYPOTHESIS TESTING
The descriptive data show that females exhibit greater weight loss than males, the analysis can,
therefore, be re-run but now selecting the alternative hypothesis Group 1 (females) > group 2 (males).

Group Descriptives Bavyesian Independent Samples T-Test
BF error %
Group N Mean SD \Weightloss 884692997 NaM
Weight loss Females 42 6.920 2242 Note. Faor all tests, the alternative hypothesiz
Males 45 3720 2 Rao specifies that group Females is greater than
group Males.

This shows that the evidence for this one-sided alternative hypothesis (BF+0) is now 884,693 times
more likely than under the null hypothesis. The error% is reported a NaN since the error is incredibly

small.

Prior and Posterior

data|H+
BF.p = 884692.997 median = 1.259
BF . = 0.000 95% Cl: [0.808, 1.723]
data|HO
2.5 4
— Posterior
ag - - Prior
215 4
7]
©
0 1.0 1?
0.5 -
0.0 - &
[ | | | |
=2.0 -1.0 0.0 1.0 2.0

Effect size §

The prior and posterior graph now shows the one-sided prior with all its weight on the positive effect
size side.
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REPORTING THE RESULTS

Following a 4-week diet, females lost on average 6.93 kg compared to males who lost 3.72 kg. A two-
sided analysis revealed a Bayes factor (BFio) that the data were 442346 times more likely under the
alternative than the null hypothesis. A subsequent one-sided test based on the alternative positive
directional hypothesis that females lost more weight than males (BF+0) resulted in a Bayes factor
indicating that the data were 884,692 times more likely under this directional alternative hypothesis
than the null with a median effect size of 1.26.

BAYESIAN MANN-WHITNEY TEST
JASP has an option to run a Mann-Whitney test for nominal or non-normally distributed data as an
alternative to the Student T-test.

Tests
Student

) Mann-Whitney
Mo. samples 1000

The first thing to notice is that the analysis takes longer than when running the Student T-test.
Secondly, if the analysis is repeated on the same data, although the W statistic is the same, the BF is
usually quite different. Below is the output for 3 analyses of the same data:

Bayesian Mann-Whitney U Test

BF . W R~

Fain score 30582 207000 1.003

Note. Result based on data augmentation algorithm
with 5 chains of 1000 iterations.

BF: W R

Fain score 46327 207000 1.001

MNote. Result based on data augmentation algorithm
with & chains of 1000 iterations.

BF:o w R*

Fain score 33614 207.000 1000

Note. Result hased on data augmentation algorithm
with & chains of 1000 iterations.

The following explanation has been paraphrased from the JASP forum

“The underlying algorithm introduces some degree of variation ............ it runs multiple chains and
bases the Bayes factor off that.

This variation is especially prevalent when there is either a low sample size or a low number of MCMC-
samples. For now, maybe it helps to increase that number to the maximum.”

| have found a more stable repeated BF by increasing the number of samples/ iterations from 1000 to
10,000.
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THE BAYESIAN PAIRED SAMPLES T-TEST

This test, like, the classical parametric paired-samples t-test compares the means between two related
groups on the same continuous, dependent variable. For example, looking at weight loss pre and post
2 weeks jogging programme. The two-sided version of this test compares two hypotheses for effect
size &:

Ho: the null hypothesis - that the effect size is absent (i.e., 8 = 0)

Hi: the alternative hypothesis - that the effect size 6 #0

ASSUMPTIONS
Four assumptions are required for a paired t-test to provide a valid result:
1. The dependent variable should be measured on a continuous scale.
2. The independent variable should consist of 2 categorical related/matched groups, i.e. each
participant is matched in both groups
3. The differences between the matched pairs should be approximately normally distributed
4. There should be no outliers in the differences between the 2 groups.

Open Bayesian paired t-test.csv into JASP. As a matter of good practice check the data using the
Descriptives analysis. As can be seen, there are no outliers so assumption 4 is fine.

Pre-training mass Post-training mass

— 75+ o
w 70- I @707
w m
E =
65
205" g
£ £
£ ® o
60 560
:
Q g5 | 55 1
50 50-

To check the normality of the paired differences, go to the spreadsheet view and click on the black
cross in the column header row to add a computed column. Name the new column “difference” and
make sure that it is a Scale variable. In the dialogue box drag pre-training mass to the main box, click
on the minus sign and drag over the post-training mass then click Compute column.
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Computed Column: Difference

sri A% =FELS>2AV | -
“ Participant “ Pre-training mass - “ Post-training mass Iyl
“ Pre-training mass =1 Oy
“ Post-training mass M Uz‘r'
 Difference 2

[1y

il R Compute column 0 x

Now in Descriptives, the difference column can be used to check for data normality using Shapiro-
Wilk. In this case, assumption 3 has not been violated since Shapiro-Wilk is not significant.

Descriptive Statistics
Difference

Valid 16
Missing ]
Mean 213
Std. Deviation 273
Shapiro-Wilk 0.97
P-valug of Shapiro-'Will 0.73
Minimum -3.00
Maximum 8.00

NOTE: To date, a non-parametric version (i.e. Wilcoxon's test) of a Bayesian paired samples t-test has
not been implemented in JASP 0.10.2 but will be added soon.

RUNNING THE ANALYSIS

Go to T-Tests > Bayesian Paired Samples t-test. Move the paired variables into the analysis box on the
right. In the first instance, tick

the alternative hypothesis to be Measure 1 # Measure 2

BF10

Descriptives

Plots - Descriptive

ANRNENRN
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¥ Bayesian Paired Samples T-Test

% Participant
“ Pre-training mass
“, Post-training rmass
“ Difference

Variable pairs

Pre-training mass

Alt. Hypothesis
) Measure 1 # Measure 2

Measure 1 = Measure 2

Measure 1 < Measure 2

Bayes Factor
© BFio

BFo1
Log{ BF1o :l

Tests
) student

Wilcoxon signed-rank

Mo. samples | 1000

Missing Values

) Excdude cases per dependent variable

Excude cases listwise

Plots

Prior and posterior
Additional info
Bayes factor robustness check
Additional info
Seqguential analysis
Robustness check
Descriptives

Credible interval 95.0 %

Additional Statistics

Descriptives

UNDERSTANDING THE OUTPUT
The output should consist of two tables and one graph.

Bayesian Faired Samples T-Test

BF: error %

Pre-iraining mass

Post-training mass

7.26 1.96e -4

The BFyo value is the ratio of the

JASP — Bayesian Inference. Dr Mark Goss-Sampson

Likelihood of data given the alternative hypothesis ()

Likelihood of data given the null hypothesis ()

in this case, the alternative hypothesis (H1) is 7.26 times more likely than the null hypothesis. Using
Jeffrey’s criterion, this is moderate evidence in favour of the alternative hypothesis.

Post-training mass
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The error % is based on the accuracy of the Bayes factor calculations, if this is less than 10% this can
be ignored. Although there is moderate evidence for a difference between the two groups the Bayes
factor does not show in which direction they differ.
This can be seen in the Descriptives table where body mass is lower 2 weeks post-training with a mean
difference of 2.13 kg. The descriptives plot shows the mean values and their ‘credible intervals’.

Descriptives

95% Credible Interval

M Mean sD 5E Lower Upper
Pre-training mass 16 65.38 543 1.36 62.48 63.27
Post-training mass 16 63.25 6.15 1.54 Bo.97 66.53

Pre-training mass - Post-training mass

70

58 -

[
Post-training mass

FURTHER CHECKS
Go back to the statistical options and tick all the other
more graphs:

1
Pre-training mass

available Plots options which will result in 3

Plots
Prior and posterior

Additional info
Bayes factor robustness
Additional info

Sequential analysis
Robustness check
Descriptives
Credible intenval 93

check

%%
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Prior and Posterior

data]H1
BF 19 =7.256 median = 0.681
BFg1=0.138 95% CI: [0.142, 1.253]
data|HO
20~
— Posterior
=== Prior
1.5 4
=
2 1.0 -
[0
(m]
0.5 +
0.0 - mmm
I T 1 1 1
-2.0 -1.0 0.0 1.0 2.0

Effect size 8

The dashed line shows the prior distribution and the solid line the posterior distribution (based on the
dataset). The posterior distribution is shifted to the right over positive effect sizes. Each of the
distributions has a grey dot at the 0.0 effect size. If the dot on the prior distribution is higher than the
one on the posterior distribution, then the Bayes factor supports the alternative hypothesis.

Bayes factors supporting the alternative/null hypothesis (BFi0) and null/alternative hypothesis (BFo).
The pizza plot distribution shows the proportion of evidence for the H; (red) and Ho (white) hypothesis.
In this example, the pizza plot is predominantly red. The median effect size and 95% credible intervals
are also shown.

Robustness relates to the strength of the model and is used when the data are collected from a wide
range of probability distributions that are largely unaffected by outliers or small violations of model
assumptions.

The width (uncertainty) of the prior distribution is set as 0.707 by default in JASP. This graph shows a
range of prior widths, which in this case are relatively consistent and do not greatly change the BFyo
value. Therefore, it can be concluded that this test is robust to changes in the prior width.

Bayes Factor Robustness Check

e max BF4g: 7.295 at r=0.6244
© user prior: BF;=7.256
e wide prior: BF,;=6.748
o ultrawide prior; BF;=5.780
B0 q mmmm s -
T Evidence for H1 Strong
10 - B
_ Moderate 3|
~ o
@ i 2
Anecdotal 3
1 = -
l Evidence for HO Anecdotal
13 - -

I T T T T T 1
0 0.25 0.2 0.75 1 1.25 1.5

Cauchy prior width
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The sequential plot shows how the Bayes factor changes after every data point are added with the
BFyo fluctuating between anecdotal and moderate evidence in support of the alternative hypothesis.

Sequential Analysis

data|H1
BF 0 =7.256 o Evidence for H1:
BF,;=0.138 Moderate
data|HO
B0 q co e -
T Evidence for H1 Strong
10 -
o ° . 0® Moderate -
o 3- o ® - <
w ° °® Anecdotal &
m o2 5
119 —*© s} o B (9]
Anecdotal @
113 -
J, Evidence for HO Moderate
110 - L
| | I | |
0 5 10 15 20
n

REFINING THE HYPOTHESIS TESTING
The descriptive data show that the group had lower body mass after 2 weeks jogging exercise, the

analysis can, therefore, be re-run but now selecting the directional alternative hypothesis Measure 1

(pre-training) > Measure 2 (post-training).

Descriptives Bayesian Paired Samples T-Test

EF= error %

N Mean SD Pre-raining mass -  Post-training mass 1443  ~3.08e-4

Pre-fraining mass 16 65.38 543
FPost-training mass 16 63.25 6.15

Based on the interpretation of the posterior probability having seen the data, the one-sided
alternative hypothesis (BF+0) is now 14.43 times more likely than under the null hypothesis.

The prior and posterior graph now shows the one-sided prior with all its weight on the positive effect

size side.
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Prior and Posterior

data|H+
BF.o=14.432 median = 0.680
BF . =0.069 95% CI: [0.165, 1.255]
data|HO
2.0
— Posterior
--- Prior [ |
1.5 4
>
=
210
[}
(m]
0.5 -
0.0 ~
I 1 1 1 I
-2.0 -1.0 0.0 1.0 20
Effect size &
REPORTING THE RESULTS

Following 2 weeks of jogging training, the study group lost on average 2.13 kg (pre-training: 65.4 5,4
kg, Post Training: 63.25 + 6.16 kg). A two-sided analysis revealed a Bayes factor (BFio) suggesting that
the data were 7.2 times more likely under the alternative than the null hypothesis. A subsequent one-
sided test based on the alternative positive directional hypothesis that body mass post-training was
less than pre-training (BF+0) resulted in a Bayes factor indicating that the data were 14.43 times more
likely under this directional alternative hypothesis than the null with a median effect size of 0.63.
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BAYESIAN CORRELATION

Correlation is a statistical technique that can be used to determine if, and how strongly, pairs of
variables are associated. Correlation is only appropriate for quantifiable data in which numbers are
meaningful such as continuous or ordinal data. As in frequentist correlation both parametric
(Pearson’s) and non-parametric (Kendall’s tau) correlation coefficients are reported. However, p
values and confidence intervals are replaced by Bayes factors (BF) and credible intervals.

The test assesses whether the data are more likely to occur under the null hypothesis (Ho)

i.e. that there is no linear association between the two variables), or under the alternative
hypothesis (H; i.e. there is an association between the two variables). Then, after observing the
data, Bayes’ theorem is applied to obtain the posterior probability of both hypotheses.

ASSUMPTIONS
Four assumptions are required for a correlation to provide a valid result:

1. The two variables should be measured on a continuous scale.

2. There is a linear relationship between the two variables

3. The data should be approximately normally distributed (can use Kendall’s tau-b option if this
assumption not met)

4, There should be no outliers in the 2 variables.

RUNNING THE BAYESIAN CORRELATION
Open Bayesian correlation.csv in JASP. This contains real data comprising a series of variables that
can be measured during a golf drive:

Variables:
e Shot score (best value = 100, lowest = 0)
e Ball speed (m/s)
e Launch angle (degrees)
e Backspin (rpm)
e Distance (m)

Run a descriptive analysis to check for data normality and the presence of any outliers. In this case,
none of the variables shows a deviation from normality (see Q-Q plots)

Descriptive Stafistics

Shot Score Ball Speed Launch Angle Back Spin Distance

Valid 25 23 23 23 23

Missing 0 0 0 0 0

Mean 871 6.4 152 2744 5 2445

Std. Deviation 45 12 22 6322 3.0

Minimum 77.0 63.5 111 1809.0 2265

Maximum 93.2 63.4 206 4378.0 2568
Go

to Regression > Bayesian correlation. Move all variables into the analysis box on the right.
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In the statistics options, tick

Alternative hypothesis = correlated
BF1o

Report Bayes factors
Flag supported correlations

D NI NI NI NI N

Pearson’s rho (or Kendall’s tau if data is not normally distributed)

Plots — Correlation matrix and posteriors under H;

(will present the Bayes factor in favour of the alternative hypothesis)

A stretched beta prior width of 1 is set by default i.e. all correlations between -1 and +1 are given an

equal prior probability.

¥ Bayesian Correlation

Correlation Coefficient
Pearson
Kendall's tau-b

Alt. Hypothesis
O Correlated

Correlated positively

Correlated negatively

Bayes Factor
0 BFia

Log(BF10)

L “, Shot Score

“, Ball Spead
% Launch Angle
“, Back Spin
“, Distance

Additional Options
Display pairwise table
Report Bayes factors
Flag supported correlations
Sample size
Credible intervals

Interval |95 %

Plots
Correlation matrix
Densities for variables
Posteriors under Ha

Prior
Stretched beta prior width 1
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UNDERSTANDING THE OUTPUT

The Bayesian Pearson correlation matrix is

correlation matrix for comparison.

Pearson Correlations

shown below as is the normal frequentist Pearson

Shot Score Ball Speed Launch Angle Back Spin Distance
Shot Score Pearson's r —
p-value —
Ball Speed FPearson's r 042 —
p-value 0.03 —
Launch Angle FPearson's r 0.40 -0.11 —
p-value 0.04 0.57 —
Back Spin FPearson's r -0.14 -0.36 0.01 —
p-value 0.49 0.06 0.95 —
Distance Pearson's r 0.67=* 0.g2== 0.50% —0.58% —
p-value = 001 = 001 0.01 0.00 —

Tp=.05 p=01 " p=001

As can be seen, both the Bayesian and frequentist analysis report the same Pearson’s r-values.
Nonetheless, with p-values, it cannot be certain if non-significance is due to data insensitivity or
evidence supporting a lack of relationship between these two variables.

Whereas Pearson’s correlation flags significant correlations for ball speed, launch angle, backspin with
the distance the BFyo value for distance and Launch angle is only 7.124 suggesting that there is only
moderate evidence for a correlation between the two. Bayesian correlation between shot score and
ball speed/launch angle report low BF values in the anecdotal evidence range whereas they are
flagged as significant in the conventional correlation test. This suggests that the Bayesian approach is
more conservative and only flags significance when the evidence is strong i.e. BF>10.

Bayesian Pearson Correlations

Shot Score Ball Speed Launch Angle Back Spin Distance
Shot Score Pearson's r —
BF —
Ball Speed Fearson's r 0.42 —
BF 2.56 —
Launch Angle Fearson's r 0.40 -0.1 —
BF 1.91 0.27 —
Back Spin Fearson's r -0.14 —-0.36 0.01 —
BF 0.30 1.21 0.24 —
Distance Pearson's r 0.67=* 0.62= 0.50 —0.58* —
BF 326.00 84.50 7.12 33.95 —

*BFw =10, * BFw = 30, ** BF = 100

JASP — Bayesian Inference. Dr Mark Goss-Sampson
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The Bayes factors report very strong evidence in favour of the alternative hypothesis (i.e. a
relationship between variables) for distance with shot score (BFio= 326), ball speed BF;, = 84.5 and
Backspin (BF10=33.95). So, for example, it is 326 times more likely that distance and ball speed are
related than not. Based on the posterior probability the data are 326 times more likely under Ho than
under Hi. There was only moderate evidence for distance and launch angle (BF10 =7.12)

The correlations and posteriors under H; are plotted together. The posterior distributions are plotted
on a horizontal scale centred on a correlation coefficient of p= 0. It can be seen that posteriors relating

to negative correlations are weighted to the left of 0 and positive ones to the right of 0.

Back Spin Launch Angle Ball Speed Shot Score

Distance
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BAYESIAN CORRELATION PAIRS OPTION

The correlation between distance with ball speed and launch angle were both reported as having
positive r-values in the correlation matrix with only distance and ball speed being marked as supported
correlations. Therefore, correlations with a directional alternative hypothesis (correlated positively)
can be run.

Return to the analysis options and remove the variables just keeping distance, launch angle and ball
speed.

v' Alt hypothesis: Correlated positively

v’ Display pairwise table

v Report Bayes factors

Open up the Plot Individual Pairs tab, Add the values pairwise to the right box. Then tick all the options
as shown below:

¥ Plot Individual Pairs

“, Ball Speed 12 > Ball Speed Distance
“, Launch Angle Launch Angle Distance
% Distance

Correlation coefficient to plot Scatterplot
) Pearson
Kendall's tau

Prior and posterior Bayes factor robustness check
Estimation info Additional info
Testing info

Sequential analysis

Additional info
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UNDERSTANDING THE OUTPUT

This method now produces a table of pairwise correlations instead of the correlation matrix. The
reported r-values are the same, however, the Bayes factors are different. There is very strong evidence
(168 times more likely) supporting a positive correlation between ball speed and distance i.e. the
alternative hypothesis.

Whereas in the 2-sided correlation matrix there was only anecdotal /moderate evidence in support

of a correlation between launch angle and distance, now there is strong evidence in support of the
alternative positive correlation (BFio = 14).

Bayesian Pearson Correlations

Pearson's r BF-;
Ball Speed - Launch Angle =011 0160
Ball Speed - Distance 0.620 168.951
Launch Angle - Distance 0.495 14.180

Note. Far all tests, the alternative hypothesiz specifies that the
correlation is positive.

260 260

255 - 255 —

250 — 250 -
@ LM
2 245 4 O 245 -
o ©
= | o
A 240 g 240 -

235 - 235 —

230 230 -

(5] aQ
225 - ° 225 - ¢
[ I I I I T | [ T I T I T
63 64 65 66 67 68 69 10 12 14 16 18 20
Ball Speed Launch Angle

The posterior-prior plot for distance and ball speed, assuming a positive correlation, show the data
fully distributed to the right of rho = 0, with a median value of 0.58 as was indicated by the large Bayes
factor.

The dashed line shows the uniform prior distribution and the solid line the posterior distribution
(based on the dataset). Each of the distributions has a grey dot at the 0.0 effect size. If the dot on the
prior distribution is higher than the one on the posterior distribution, then the Bayes factor is more
supportive of the alternative hypothesis.

The robustness analysis allows one to inspect what BF would be obtained if the alternative model
were specified differently. The analysis shows the outcomes of specifying a range of different prior
values from 0 to 2.

73| Page
JASP — Bayesian Inference. Dr Mark Goss-Sampson

22



data|H+

BF.;=168.951 median = 0.580
BFg. = 0.006 95% CI: [0.296, 0.792]
data|HO
50 4
—— Posterior
404 T Prior
230 -
[
&
0O 2.0 A
1.0
0.0 -

! | | | 1 | ! |
-1 075 -05 025 0 025 05 075 1
Population correlation p

e max BF.q: 173.751 atr=0.7035
o user prior: BF,;=168.951

1‘ Evidence for H+

| Evidence for HO

I T T T 1
0 05 1 15 2
Stretched beta prior width

The prior width is set as 1.0 by default in JASP. If the results are insensitive to changes in the prior
width the Bayes factor should be stable. Except for very small prior widths, the Bayes factors are
relatively stable therefore confirming the robustness of the analysis.

A similar picture is shown below when correlating launch angle with distance.

data|H+
BF.ip=14.180 median = 0.458
BFp. =0.071 95% CI: [0.143, 0.714]
data|HO
4.0
—— Posterior
----- Prior
3.0
)
=
2 2.0
0]
0
1.0
0.0 -
| | | | 1 1 | | |
-1 -075 -05 025 0 025 05 075 1
Population correlation p
REPORTING THE RESULTS

e max BF.g: 16.602 at r = 0.4363
© user prior: BF.p=14.180

100 _

T Evidence for H+ Very strong

Stron,

.,
[=1 -
w Moderate %
: 3

Anecdotal

l Evidence for HO Anecdotal

13 - -

I T T T 1
0 0.5 1 15 2
Stretched beta prior width

Using a one-sided alternative hypothesis there was a positive correlation for distance with respect to
ball speed (r =0.620) this was accompanied by a Bayes factor BFio = 169 indicating a decisive likelihood

(“evidence”) of this occurring under the H; than Ho.

Using a one-sided alternative hypothesis there was a positive correlation for distance with respect to
the launch angle (r = 0.495) this was accompanied by a Bayes factor BFio = 14.2 indicating a strong
likelihood (“evidence”) of this occurring under the H; than Ho.

JASP — Bayesian Inference. Dr Mark Goss-Sampson
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BAYESIAN REGRESSION ANALYSIS

Both linear regression and Bayesian regression can be used for predictive analysis, i.e. to predict a
dependent outcome variable from one (simple regression) or more (multiple regression) independent
predictor variables.

Simple regression results in a hypothetical model of the relationship between the outcome and
predictor variable(s). The model used is a linear one defined by the formula:

Simple regression

I_A_\

y =bo+ bi1*x; + b2*x2 + b3*x3 +... bp*Xn

\ )
|

Multiple regression

e y=estimated dependent outcome variable score,
e Dby = constant (intercept),

e b; =regression coefficient(s) (slope)and

e x=score on the independent predictor variable (s)

NOTE: Linear regression provides both the constant and regression coefficient(s). Bayesian
regression also provides these but in a slightly different way in that, the constant is centred on the

mean value of the outcome variable.

Regression tests the following hypotheses

Ho: that there will be no prediction of the dependent (outcome) variable by the predictor
variable(s).

H1I H1 # Ho

ASSUMPTIONS

1. Linear relationship: important to check for outliers since linear regression is sensitive to their
effects.

2. Independence of variables

3. Multivariate normality: requires all variables to be normally distributed

4, Homoscedasticity: homogeneity of variance of the residuals

5. Minimal multicollinearity /autocorrelation: when the independent variables/residuals are too

highly correlated with each other.
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SIMPLE BAYESIAN REGRESSION

Regression compares the data to two hypotheses, the null hypothesis (H,) that there will be no
prediction of the dependent (outcome) variable by the predictor variable(s) against an alternative
hypothesis (H1) that does include predictor(s).

Open Bayesian regression.csv. This data set contains rugby kick data including distance (feet) kicked,
right/left leg strength and flexibility and bilateral leg strength. Firstly, go to Descriptives > Descriptive
statistics and check the boxplots for any outliers. In this case, there should be none, though it is good
practice to check.

For this simple regression go to Regression > Bayesian Linear regression and put distance into the
Dependent Variable (outcome) and R_Strength into the Covariates (Predictor) box. Tick the following
options in the Statistics options:

v’ BFyo (Bayes factor favouring the alternative hypothesis over the null hypothesis)
v' Compare to the null model
v' Posterior summary — across all models
v Descriptives
¥ Bayesian Linear Regression o o 'o 0
" L_Strength IH R EE"E'd_E"wa'ﬂ"E
% R_Flexdbility ™ Distance
™ L_Fleibility Covariates
\ Bilzteral Strength . “ R_Strength
WLS Weights (optional)
[ d
Bayes Factor Output
o BFin Posterior summary
BFo1 0 Across all modeks
Log(BFio) Across matched models
Piot of cosfficients
Crmiit intercept
Model averaged v
Credible interval 35.0 kY
Order Limit No. Modeks Shown
Compare to best model No
O compare to null model O Yes, showbest 10
Data
Diescriptives
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UNDERSTANDING THE OUTPUT

You will now get the following outputs:

Model Comparison

Models P(M) P(M|data) BFy BF o R=
Null model 0.500 0.046 0.048 1.000 0.000
R_Strength 0.500 0.954 20.728 20.728 0614

P(M) = prior model probability. Since there are only two models the prior probability of each model
is assigned an uninformed prior where both models have equal probabilities P(M) = 0.5.

P(M I data) is the probability of the posterior distribution having taken into account the data which
can be seen as having gone from 50 to 95.4% probability in the model containing right leg strength.

BFm shows how much the model has improved after seeing the data.
The BFyo value (20.728) suggests that there is strong evidence for the alternative model containing

right leg strength compared to the null model. However, the R? value suggests that right leg strength
alone only accounts for 61.4% variance in the model.

FPosterior Summaries of Coefiicients

95% Credible Interval

Coefficient Mean sD Piincl)  P(inclldata)  BFinciusion Lower Upper
Intercept 486.077  15.812 1.000 1.000 1.000 452354 515985
by R_Strength 5227 1.798 0.500 0.954 20728 0.000 7.928

This table gives the coefficients that can be put into the linear equation.
y= ba + b1*X1

y = estimated dependent outcome variable score,

bo = constant (intercept),

b1 = regression coefficient (R_strength)

x1= score difference for the independent predictor variable (= x — mean x)

Descriptives
M Wean sD
Distance 13 486.077 B85.250
R_Strength 13 66.754 10.402
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The prediction equation is therefore slightly different from the one used in normal linear regression.
For example, for a leg strength of 77 kg, the distance kicked can be predicted by the following -
remember x; the score difference for the independent predictor variable (= x — mean x):

(x —mean x)

—

Distance = 486.077 + (5.479 * [77 - 66.769])  =543.7 feet

FURTHER CHECKS

In the analysis menu, under plots, now tick Q-Q plot of model-averaged residuals. The Q-Q plot shows
that the standardized residuals fit fairly well along the diagonal suggesting that both assumptions or
normality and linearity have also not been violated.

100

Observed quantiles
o
|

-100 ~

Theoretical quantiles

REPORTING THE RESULTS

A simple Bayesian regression was carried out using right leg strength as a predictor of rugby kicking
distance. An uninformed uniform prior [P(M)] of 0.5 was set for each possible model. There was strong
evidence for a regression model including right leg strength (BF1o = 20.73) compared to the null model.

It is suggested that the Model Comparison and Posterior summaries of coefficients tables are also
shown along with the regression equation.
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MULTIPLE REGRESSION

The model used is still a linear one defined by the formula:
y =bo+bi*x
= y=estimated dependent outcome variable score,
= c=constant,
= b =regression coefficient and
= x=score on the independent predictor variable
However, we now have more than 1 regression coefficient and predictor score i.e.

y = bot bi*x1 + b2*x2 + b3*x; ........ bn*xn
RUNNING MULTIPLE BAYESIAN REGRESSION
Open Bayesian regression.csv. that we used for simple regression. Go to Regression > Bayesian linear

regression and put distance into the Dependent Variable (outcome) and now add R_strength,
R_flexibility and Bilateral strength to the Covariates (Predictor) box.

¥ Bayesian Linear Regression o 00
4, |_Strength 1 Dependent Variable
— z
% L_Flexibilty - “, Distance
Covariates
- “, R_Strength
“ R_Flexibility

‘% Bilateral Strength

WLS Weights (optional)

In the statistical analysis options use the same options as used in the simple regression example.
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Bayes Factor
ﬂ' EFip

BFo1

Log(BF10}

Order
Compare to best model
0O Compare to null model

Deta
B Descriptives

Plot of coefficients
Crmiit intercept
Model averaged v
Credible interval 35.0 k]

Limit Mo. Models Shown
No
0 Yes showbest 10

In Advanced Options, under Model Prior, select Uniform which will assign equal prior probabilities for

each possible model.

¥ Advanced Options
Prior Model Prior
AlIC Beta binomial 2 1 b1
BIC O Uniform
EB-global Wilkon & 1
EB-local Castilo v 1
g-prior Bernouili p 0.5
SUEE alpha |3 Sampling Method
Hyper-g-Laplace O BAS No. models 0
Hyper-g-n MCMC Mo. samples | 0
O 1zs rscale 0.354 Mumerical Accuracy
MNo. samples for credible interval 1000
Repeatability
Set seed: 1
UNDERSTANDING THE OUTPUT
You will now get the following outputs:
Model Comparison
Models P(M) P{M|data) BFy BFig n:
Mull model 0125 0.004 0.0249 1.000 0.000
R_Strength + Bilateral Strenath 0125 0.267 2553 63.856 0.7e2
R_Flexibility + Bilateral Strength 0125 0.185 1.502 44 283 0.761
R_Flexibility 0125 0.131 1.053 31.254 0.6449
R_Strength + R_Flexibility + Bilateral Strength 0125 0122 0873 29154 0.205
Bilateral Strength 0125 011 0877 26.600 0.636
R_Strengtn + R_Flexibility 0125 0.002 0713 22.080 0.715
R_Strength 0125 0.087 0.665 20.728 0.614
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P(M) = prior model probability; P(M|data) = posterior model probability; BF_M = change from prior
model odds to posterior model odds; BFio = Bayes factor for each row (model) against the one on top
(this is why the first BF = 1).

JASP models all possible predictor permutations and in this case, there are 8 possible models each of
which has been assigned an equal uninformed prior i.e. each model has a probability of 0.125.

The largest posterior probability P(M | Data) and BFy increases are seen in model 2 where R_strength
and Bilateral Strength are used as predictors. This is associated with the largest BFio

value of 63.86 which is very strong evidence for the alternative hypothesis (model). This is defined as
the best model.

The R? value states that this can account for 78.2% of the variance in the model compared to the 61.4%
seen in the simple regression model. Just to note, however, model 5 has a higher R? value.

In cases where there are many possible alternative models, it may be easier to change the Bayes factor
to BFo; and Compare to the best model in the options.

Model Comparison

Models Fi{M) P(M|data) BF BFg, R®
R_sStrength + Bilateral Strength 0125 0.267 2.553 1.000 0732
R_Flexibility + Bilateral Strength 0125 0.185 1.592 1.442 0.761
R_Flexibility 0125 0.131 1.053 2.043 0.649
R_Strength + R_Flexibility + Bilateral Strength 0125 0122 0973 2.190 0.805
Bilateral Strength 0.125 0111 0877 240 0.636
R_Strength + R_Flexibility 0.125 0.092 0.713 2.80 0.715
R_Strength 0.125 0.087 0.665 3.081 0.614
Mull model 0125 0.004 0.029 G3.856 0.000

Here the model containing right leg strength and bilateral strength has been selected as the best
model (with a Bayes factor of 1). The BFo; i.e. favouring the null model allows comparison of the other
models with the best one. For example, the best model is favoured 3 times more than one just
including right leg strength and 64 times more than the null model.

The coefficients are shown for all the covariates included in the analysis:

FPosterior Summaries of Coefficients

95% Credible Interval

Coefficient Mean sD Fiincl)  P(inclldata)  BFingiusion Lower Upper
Intercept 486.077  13.406 1.000 1.000 1.000 458780  520.189
R_Strength 1.931 2201 0.500 0.568 1317 -0.143 5.905
R_Flexibility 2576 3.225 0.500 0.531 1.130 -0.430 10.178
Bilateral Strength 1.234 1.083 0.500 0.686 2183 -0.012 3.314

My personal preference is to rerun the analysis using just the best model covariates and use those
criteria.
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Posterior Summaries of Coeflicients

95% Credible Interval

Coefficient Mean sD Fiincl) Piincl|data) BFinciysion Lower Upper

Intercept 486.077 13.578 1.000 1.000 1.000 453129 512.356

bl R_Strength 2873 223 0.500 0.754 3.085 0.000 6.954

b; Bilateral Strength 1.643 1.080 0.500 0.806 4183 0.000 3534

Descriptives
M Mean sD

Distance 13 486 077 85250
R_Strength 13 66.769 10.402
Bilateral Sirenath 13 58846 21.687

CONSTRUCTING THE REGRESSION EQUATION

Now there is one constant (bo) and two regression coefficients (bs and by). These coefficients can be
put into the linear equation.
y =bo + bi*x1 + b2*x;
y = estimated dependent outcome variable score,
¢ = constant (mean value of the outcome variable)
b; = regression coefficient (R_strength)
b2 = regression coefficient for Bilateral strength
x1 = score difference for the R-strength variable (= x — mean x)
x2= score difference for the Bilateral strength variable (= x — mean x)

For right leg strength of 77kg and bilateral leg strength of 121 kg, the predicted kick distance from
the regression equation will be:

Distance = 486.077 + (2.973 * [77 — 66.769]) + (1.648 * [121 — 88.846]) = 578 feet
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ADDITIONAL PLOTS

Tick the following options in Plots:

¥ Plots
Coefficients Models
Inclusion probabilities Log posterior odds
Marginal posterior distributions Log(P(data)M})} vs. model size
Model probabilities
Residuals
Residuals vs. fitted
-0 plot of model averaged residuals

The first plot just enables each possible model to be visualised. The coloured squares are the included
covariates (the null model being purple). Here the best model (ranked 1) includes the intercept, right
leg and bilateral leg strength since it has the highest Log posterior odds.

Posterior Log Odds

Model Rank

1 2 3 4 5 B 7 8

Intercept

F_Strength

R_Flexibility

Bilateral Strength

4157 3.79 3.442 3.373 3.281 3.095 3.0

Log Posterior Odds

The next graph shows how close each covariate is to the cut-off prior inclusion probabilities. Right leg
flexibility is very close to this cut-off point and was not included in the best model.
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Inclusion Probabilities

1 Prior

Bilateral Strength - 1 =+ |nclusion

1 Probabilities
1

R_Strength — 1
1
1

R_Flexibility — 1
1

I I T I 1
0.000 0.175 0.350 0.525 0.700

Marginal Inclusion Probability

The Q-Q plot shows that the standardized residuals fit fairly well along the diagonal suggesting that
both assumptions or normality and linearity have also not been violated.

Observed quantiles

Theoretical quantiles

REPORTING THE RESULTS

A Bayesian multiple regression was carried out using right leg flexibility, right and bilateral leg strength,
as predictors of rugby kicking distance. An uninformed uniform prior [P(M)] of 0.125 was set for each
of the possible 8 models. There was strong evidence for a regression model including the right leg and
bilateral leg strength (BF10 = 63.9) compared to the null model.

It is suggested that the Model Comparison and Posterior summaries of coefficients tables are also
shown along with the regression equation.
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BAYESIAN ANOVA

Whereas t-tests compare the means of two groups/conditions, one-way analysis of variance (ANOVA)
compares the means of 3 or more groups/conditions. The Bayesian approach compares the predictive
performance of different models. JASP features Bayesian versions of the between subjects, repeated
measures, and mixed ANOVAs.

In these analyses, the following models are compared:

Ho — Null hypothesis: predicts the overall mean

H; — Alternate hypothesis: predicts the means of the different levels of the fixed factor.

If the alternative hypothesis model outperforms the null model, this is an indication that the
dependent variable differs between the levels of the independent variable. However, this does not
say between which specific levels these differences occur. To determine where the group differences
are, post hoc (From the Latin post hoc, "after this") tests can be conducted.

ASSUMPTIONS

1. The independent variable must be categorical, and the dependent variable must be
continuous.
The groups should be independent of each other.
The dependent variable should be continuous and approximately normally distributed.
There should be no outliers.
There should be homogeneity of variance between the groups. The first 2 assumptions are
usually controlled using an appropriate research method design.

vk wN

RUNNING THE BAYESIAN ANOVA
Load Bayesian Independent ANOVA.csv. This contains data showing blood cholesterol levels (mmol/L)
in a control group and two groups taking different statin drugs. For good practice check the descriptive

statistics and the boxplots for any extreme outliers.

T
T

T
I 8 &

I I I
Control Drug A Drug B
Treatment

20—

-
wl
1

Cholesterol
2

w
1

There is no evidence that the response variable is consistently non-normal across all populations -
each boxplot is approximately symmetrical. No extreme outliers are observed. There is no evidence
that variance, as estimated by the height of the boxplots, differs between the groups.
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NOTE: When running the ANOVA analysis using the included dataset the results are likely to be very
slightly different to the ones in this presented chapter. This is because the analyses are based on
numerical algorithms like Markov chain Monte Carlo (MCMC). The degree to which the results
fluctuate is quantified by an error percentage. The higher the error percentage, the higher the
fluctuation of the results.

Go to ANOVA > Bayesian ANOVA, put Cholesterol into the Dependent Variable and the treatment
groupings into the Fixed Factors box.

¥ Bayesian ANOVA o 00
Dependent Variable
" “, cholesteral
Fixed Factors
8 & Treatment

In the main analyses options
v’ Change the Order option to ‘Compare to the null model.
v Plots — Q-Q plot of residuals

This will initially result in one table and one graph.

UNDERSTANDING THE OUTPUT

Firstly, it is important to test the assumption of normality, in this case, that the residuals are normally
distributed. This can easily be done by looking at the Q-Q plot (below left). If the residuals are normally
distributed, they should lie consistently along the diagonal line. Any obvious deviations along the line
(as seen below on the right) would suggest that the assumption of normality has been violated.

Observed quantiles
Observed quantiles

=

1

=101

| -20-

]
[¥5]

]
3]

'
—
(=]
-
M
[4%)

Theoretical quantiles Theoretical quantiles
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The following table compares the competing models:

Models:

P(M):

P(M |data):

BFwm:

BFloZ

Error %:

Model Comparison ¥

Models P(M) P(M|data) BFyy BF o error %
Null model 0.500 0.002 0.002 1.000
Treatment 0.500 0.998 545 791 545 791 0.010

shows the two models tested, null and treatment. The null model is shown first.

for the ANOVA, the analysis sets the prior probabilities of each model to be equal (i.e.,
prior model odds of 0.5)

shows the updated probabilities having now seen the data (i.e., posterior model
probabilities).

shows how much the data have changed the prior model odds

shows the Bayes factors for each model. The first entry is always 1 since the null
model is compared against itself. The BFio for treatment, 546 suggests that the data
are 546 times more likely under the model incorporating treatment, than under the
null model.

is very small, 0.01%, indicating that the sensitivity to numerical fluctuations is
minuscule.

If the evidence suggested that the data is best predicted by the null model or that the evidence for
the alternative was inconsequential. Although evidence for a lack of an effect is still information —

there is no point in following up with further analyses.

FURTHER ANALYSIS
Select the following options for further analysis.
In the main analysis options:
v Tables — Descriptives
v Plots — Model averaged posteriors — Group levels in a single plot
Add treatment to Post hoc tests
Add Treatment to the horizontal axis in Descriptive plots and display credible intervals
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¥ Post Hoc Tests

2 & Treatment
Correction
Mull control
¥ Descriptives Plots
Factors Horizontal Axis
= & Treatment
Separate Lines
[ 2
Separate Plots
»
Display
Credible interval 95 %

The descriptives and plot show that both drug groups have lower cholesterol than the control group.

Descriptives - Cholesterol 12

95% Credible Interval =
Treatment Mean sD M Lower Upper g
©
Control 9778 3,689 24.000 8.220 11.336 =
Drug A 5352 2748 24.000 4192 6.512 o

Drug B 6.402 3421 24000 4957 7847 4 - | : |

Control Drug A Drug B
Treatment

The model-averaged posterior distributions (horizontal bars show the 95% credible intervals around
the median) are shown below. There is a clear difference between the two drug groups compared to

the control group.

Treatment
Level
0.8 - = — — Control
’ — Drug A
— Drug B
> 06 -
‘®
& 0.4 -
80
0.2
0.0 -
I I I I I I 1
-6 -4 -2 0 2 4 6
Treatment
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Bayesian post hoc testing is based on pairwise comparisons using Bayesian t-tests. As in frequentist
analyses, multiple t-tests will increase familywise error. In JASP, methods are used to correct for
multiplicity based on adjusting the prior odds. The post hoc comparisons are shown in the table below.
The relative plausibility of each model is specified by the prior odds. If the odds are <1, there is some
prior belief that there is no difference. The posterior odds are the result of multiplying the prior odds
by the BF and represent the relative plausibility of the models after observing data.

Post Hoc Comparisons - Treatment

Prior Odds  Paosterior Odds BFyg u erar %

Control Drug A 0.587 467323 795578 2872e-7
Drug B 0.587 10.587 18.023 5.066e -5
Drug A Drug B 0.587 0.295 0.502 0.023

MNote. The posterior odds have been corrected for multiple testing by fixing to 0.5 the prior
probability that the null hypothesis holdsacross all comparisons (Westfall, Johnson, &
Utts, 1997 Individualcomparizons are based on the default t-test with a Cauchy (0, r
=1isqri(2]) prior. The "U” in the Bayes factor denotes that it is uncorrected.

Comparison of Drug A to the control: the posterior odds suggest that the alternative hypothesis (H;)
is 467 times more likely than the null hypothesis (Ho). The update from prior to posterior odds can
be described as decisive evidence in favour of H;.

Comparison of Drug B to the control: the posterior odds suggest that the alternative hypothesis (Hi)
is 10.6 times more likely than the null hypothesis (Ho). The update from prior to posterior odds can
be described as strong evidence in favour of Hj.

Comparison of Drug B to Drug C: the posterior odds suggest that the null hypothesis (Ho) is 3.4 (1 /
0.295) times more likely than the null hypothesis (H1). The update from prior to posterior odds can
be described as moderate evidence in favour of Ho.

REPORTING THE RESULTS

The Bayesian one-way ANOVA indicates that the data were 540 times more likely to occur under the
model including the effect for treatment, compared to the model without the effect. In order to follow
up on this result, we compared each level of the dependent variable. The cholesterol levels on drug
A and drug B were 5.35 and 6.04 mmol/L respectively compared to the control group (9.79 mmol/I).
Post hoc comparisons of Control .vs. Drug A and Control .vs. Drug B revealed posterior odds of 467
and 10.5, which indicates decisive and strong evidence respectively in favour of the alternative
hypothesis, that is, a reduction in cholesterol levels.
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BAYESIAN REPEATED MEASURES ANOVA

The Bayesian one-way repeated measures ANOVA (RM ANOVA) is used to assess if there is a
difference in means between 3 or more groups, featuring the same set of participants tested multiple
times or under different conditions. Such a research design, for example, could be that the same
participants were tested for an outcome measure at 1, 2, and 3 weeks or that the outcome was tested
under conditions 1, 2, and 3 (i.e., within each subject).

The independent variable should be categorical and the dependent variable needs to be a continuous
measure. In this analysis, the independent categories are termed levels (i.e., these are the related
groups). So, in the case where an outcome was measured at weeks 1, 2, and 3, the 3 levels would be
week 1, week 2, and week 3.

The models under consideration are

Ho: the null model, where there are no differences between the levels: i.e., no effect (6=0)
Hi the alternative model, where there are differences between the levels: i.e., there is an effect
(620)

ASSUMPTIONS

The RM ANOVA makes the following assumptions:
e The dependent variable and residual should be approximately normally distributed.
e There should be no outliers.
e Homogeneity of variances across the factor levels.

RUNNING THE BAYESIAN ANOVA

Load Bayesian RMANOVA.csv. This contains data showing creatine kinase (CK) levels (mmol/L) in
blood taken over days 1, 3, and 5 following a muscle damage protocol. For good practice, check the
descriptive statistics and the boxplots for any extreme outliers. It can be seen that there are no
outliers.

NOTE: When running the ANOVA analysis using the included dataset the results are likely to be very
slightly different to the ones in this presented chapter. This is because the analyses are based on
numerical algorithms like Markov chain Monte Carlo (MCMC). The degree to which the results
fluctuate is quantified by an error percentage. The higher the error percentage, the higher the
fluctuation of the results.

Go to ANOVA > Bayesian Repeated Measures ANOVA. In Repeated measures factors, define the
RMPFactor 1 as Time and add days 1, 3, and 5 as levels. Then add the appropriate variables to the
Repeated Measures cells.
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% Subject Repeated Measures Factors
Time
Day 1
Day 3
Day 5
Level 4
RM Factor 2

Repeated Measures Cels

" CKday_1 Day 1
CKday_3 Day 3
CKday_5 Day 5

¥ Bayesian Repeated Measures ANOVA @000

In the main options add the following:
v’ Order - ‘Compare to null model’
v’ Tables — Descriptives
v Plots — Q-Q plots of residuals
In descriptive plots add Time to the horizontal axis

UNDERSTANDING THE OUTPUT

Firstly, it is important to test the assumption of normality, in this case, that the residuals are normally

distributed. This can easily be done by looking at the Q-Q plot.

300
200 —

100 —

0_

-100 —

Observed quantiles

-200 -

-300 -

[ | I I I ]
3 2 4 0 1 2 3

Theoretical quantiles

If the residuals are normally distributed, they should be positioned consistently along the diagonal
line. Any obvious deviations along the line would suggest that the assumption of normality has been

violated.

JASP — Bayesian Inference. Dr Mark Goss-Sampson

91| Page



Bayesian Repeated Measures ANOVA

Model Comparison

Models P{M) PiM|data) BFpy BF1g aror %
Null model (incl. subject) 0.500 1.017e-9  1.017e-9 1.000
Time 0.500 1000 9836e+8  9.836e+5 0.847

Note. All models include subject

Models: shows the two models tested, null and Time.

P(M): for the RMANOVA, the analysis sets the prior probabilities of each model is equal (i.e.,
50:50).

P(M |data): shows the updated posterior probabilities having now seen the data.

BFm: shows how much the data have changed the prior model odds

BF1o: shows the Bayes factors for each model. The first entry is always 1 since the null

model is compared against itself. The BFy, for time, 9.83*10% suggests that the
model which includes Time predicts the observed data 9.83*108 times better than
the null.

Error %: is very small, 0.85%, and can be considered negligible.

The descriptive values and plots show that CK levels were higher on day 3 than days 1 and 5.

700 -
Descriptives
95% Credible Interval
Time Mean SD N Lower Upper
Day 1 328.000 139.346 15.000 250.833 405.167
Day 3 583.000 196.602 15.000 474125 691.875
Day 5 337.267 131.117 15.000 264657 409.877
200 -

I I 1

Day1 Day3 Day5
Time
If the evidence suggested that the data is best predicted by the null model or that the evidence for

the alternative was inconsequential. Although evidence for a lack of an effect is still information —
there is no point in following up with further analyses.
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FURTHER ANALYSIS

Select the following options for further analysis:
v’ Tables Estimates
v' Plots Model averaged posteriors — Group levels in a single plot
v" Plots Q-Q plots of residuals

Also, add the following:

¥ Post Hoc Tests

Time

Correction
Mull control

Estimates are shown in the Model averaged posterior summary table:

Model Averaged Posterior Summary

95% Credible Interval

WVariable Level Mean sD Lower Upper
Intercept 415741 39.820 335.014 4085.788
Time Day 1 -86.438 14.430 -115.541 —-57.468

Day 3 163.450 14691 132996 191.843
Day 5 —-77.012 14 467 —-105.637 —-47 874

This table shows the mean differences and 95% credible intervals for each of the factor levels
normalised to the intercept (mean value of all the data) and is explained graphically below.

600 - 163

Intercept=415

300 -

Day 1 Day 3 Day 5

The model-averaged posterior distributions (horizontal bars show the 95% credible intervals around
the median) are shown below on the left. There is a clear separation between day 3 and days 1 and 5.
Below is a visualisation of the model-averaged posterior summary table data.
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The post hoc comparisons are shown in the table below. The relative plausibility of each model is
specified by the prior odds, i.e., the relative probability of the models before observing data. If the
odds are <1, there a prior belief that there is no difference. The posterior odds are the result of

multiplying the prior odds by the BF (which is affected by the prior distribution) and represent the
relative probability of the models after observing the data.

Post Hoc Comparizons - Time

Prior Odds  Posterior Odds BFio, v error %
Day 1 Day 3 0.587 30416.858 51782.057 $.4992 -10
Day 5 0.587 0.223 0.379 0.005
Day 3 Day 5 0.587 28576.282 48648.673 1.031e -9

Naote. The posterior odds have been corrected for multiple testing by fixing to 0.5 the prior
probability that the null hypothesis holdsacross all comparisons (Westfall, Johnson, & Utts,
1997). Individualcomparisons are based on the default t-test with & Cauchy (0, r =1/sqgrt(2))
prior. The "U” in the Bayes factor denotes that it is uncorrected.

Comparison of CK levels on day 1 with day 3: The posterior odds indicate that the data is 30,416 times
more likely to occur under the alternative hypothesis (H1) than under the null hypothesis. This can be
described as decisive evidence in favour of Hs.

Comparison of CK levels on day 1 with day 5: The posterior odds indicate that the data is 4.48 (1/
0.223) times more likely to occur under the alternative hypothesis (Ho) than under the alternative
hypothesis. This can be described as moderate evidence in favour of Ho.

Comparison of CK levels on day 3 with day 5: The posterior odds indicate that the data is 28576 times
more likely to occur under the alternative hypothesis (H1) than under the null hypothesis. This can be
described as decisive evidence in favour of H;
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REPORTING THE RESULTS

Using a Bayesian RM ANOVA (specifying a multivariate Cauchy prior on the effects®), the Bayes factor
indicates that the data are 9.72*10® times more likely under the model that includes time as the
predictor, compared to the null model. Post hoc comparisons of day 1 .vs. day 3 and day 3 .vs. day 5
revealed posterior odds of 30,416 and 28,576 against the null hypothesis, which indicates decisive
evidence in favour of the alternative hypothesis. When comparing day 1 and 5, there was moderate
evidence in favour of the null hypothesis.

6 Rouder et al 2012, van den bergh 2019 https://psyarxiv.com/spreb

95| Page
JASP — Bayesian Inference. Dr Mark Goss-Sampson



BAYESIAN MIXED FACTOR ANOVA

Mixed factor ANOVA (another two-way ANOVA) is a combination of both independent and repeated
measures ANOVA involving more than 1 independent variable (known as factors). Below is a design
with time as the within and group as the between factor:

Independent Independent variable (Factor 1) = time or condition

variable (Factor 2) Time/condition 1 Time/condition 2 Time/condition 3
Group 1 Dependent variable Dependent variable Dependent variable
Group 2 Dependent variable Dependent variable Dependent variable

The factors are split into levels, therefore, in this case, Factor 1 has 3 levels and Factor 2 has 2 levels.
This results in 6 possible combinations.

A “main effect” is the effect of one of the independent variables on the dependent variable, ignoring
the effects of any other independent variables. There are 2 main effects tested: in this case comparing
data across factor 1 (i.e., time) is known as the “repeated measures” factor while comparing
differences between factor 2 (i.e., groups) is known as the “between-subjects” factor. Interaction is
where one factor influences the other factor.

The standard frequentist approach to ANOVA is to compare the variances between levels of a
defined factor where the Hy is that these variances are equal.

The Bayesian ANOVA compares the predictive performances of the possible competing models, i.e.,
how likely a set of data is under one model compared to another. In most cases, one model is the null
model (Ho) suggesting that the data is purely random and the alternative model (H,) that one or more
of the factors have an effect. In the mixed factor analysis, multiple models are tested.

ASSUMPTIONS
Like all other analyses, mixed factor ANOVA makes a series of assumptions which should either be
addressed in the research design or can the tested for.
1. The “Repeated measures” factor should contain at least two related (repeated measures)
categorical groups (levels).
2. The “Between-subjects” factor should have at least two categorical independent groups
(levels).
3. The dependent variable should be continuous and approximately normally distributed for
all combinations of factors.
4. There should be homogeneity of variance between the groups.
5. There should be no outliers.
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RUNNING THE MIXED FACTOR BAYESIAN ANOVA
Open Bayesian Mixed ANOVA.csv in JASP. This contains 4 columns of data relating to the type of
weightlifting grip and speed of the lift at 3 different loads (%1RM) for deadlifting. Column 1 contains
the grip type, columns 2-4 contain the 3 repeated measures (30, 50 and70%). Check for outliers using
boxplots.

NOTE: When running the analysis using the included dataset the results are always likely to be very
slightly different to the ones in this chapter. This is because the analyses are based on numerical
algorithms like Markov chain Monte Carlo (MCMC) which reports an error percentage. The higher

the error percentage the higher the fluctuation of the results.

Go to ANOVA > Bayesian Repeated measures ANOVA. Define the Repeated Measures Factor,
%1RMax, and add 3 levels (30, 50 and 70%). Add the appropriate variable to the Repeated measures

Cells and add Grip to the Between-Subjects Factors:

Repeated Measures Factors

el RMax
30%
50%

70% %]

Repeated Measures Cells

B RM30 30%
%% RMSO  50%
% RM70D  T0%

Between Subject Factors

& Grip

Then select the following options:

Bayes Factor — BFio

Order — compare to best model
Tables — Effects — Across all models
Q-Q plots of residuals.

Descriptives

A N NI NI NI

In Descriptive plots move %1Rmax to the horizontal axis and Grip to ‘Separate lines’

The output should initially comprise of 4 tables and 3 graphs.

JASP — Bayesian Inference. Dr Mark Goss-Sampson
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UNDERSTANDING THE OUTPUT
Firstly, it is important to test the assumption of normality, in this case, that the residuals are normally
distributed. This can easily be done by looking at the Q-Q plot.

0.8 —
0.6 -
0.4 —
0.2

D —
-0.2 -
-0.4 —
-0.6

Observed quantiles

| T T | | T |
-3 -2 -1 0 1 2 3

Theoretical quantiles

If the residuals are normally distributed, they should lie consistently along the diagonal line. Any
obvious deviations along the line would suggest that the assumption of normality has been violated.
The assumption of homogeneity of variance can be assessed using Levene's test which is calculated as
part of the classical ANOVA analysis.

Comparison of the competing models — Best model
The first column lists all models determined: four alternative models and one null model. The models

Model Comparison

Models P(M) P(M|data) BFw BF g BrTor %
% 1RMax + Grip + % 1RMax = Grip 0.200 0.097 1265774 1.000
%1RMax + Grip 0.200 0.003 0.012 0.003 2 680
% 1RMax 0.200 6.103e -5 2477e -4 62128 -5 1.838
Grip 0.200 4660e-17  1864e-16  4.675e-17 1.803
Mull model {incl. subject) 0.200 2057Te-17  8228e-17  2.064e-17 1.700

MNaote. All models include subject

are ordered by their predictive performance relative to the best model in this case.
In the other columns, results are presented for:

P(M): for the ANOVA, the analysis sets the prior probabilities of each of the five models to
be equal (i.e., 0.2).

P(M |data): shows the updated probabilities having now seen the data.
BFM: shows how much the data have changed the prior model odds

BF1o: shows the Bayes comparison with the best model; for the first row, it is always 1
since it is being compared to itself.
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H(1):%1RM + Grip + %1RM*Grip

A model based on the alternative hypothesis that lift speed depends on %1RM, grip type and the
interaction between these two factors. This is the best model and has a BF1p=1 since it is being
compared to itself.

H(1):%1RM + Grip

A model based on the alternative hypothesis that lift speed depends on %1RM and grip type. This a
BF10 of 0.003 or a BFp; of 322, suggesting that the data are 322 times more likely under the best
model than under the model with main effects only.

H(1): %1RM, H(1): grip
Models based on the alternative hypothesis that lift speed depends on either %1RM or grip alone
have extremely small BF1o values, as does the null model.

Comparison of the competing models — Null model

Alternatively, the data can be compared to the null model rather than the best model. In the options
change the order to ‘compare to the null model’. The model comparison has tested 5 models and
compares the alternative models to the null model (Ho) which that states lift speed is not dependent
on any other factors.

Model Comparison

Models P{M) P(M|data) BFw BF g error %
Null model (incl. subject) 0.200 2.057e-17  8.228e-17 1.000
%1RMax + Grip + %1RMax  Grip 0.200 0.997 1265774  4.846e +16 1.700
% 1RMax + Grip 0.200 0.003 0012  1501e+14 2071
% 1RMax 0.200 61032 -5  2477e -4  3011e+12 0.699
Grip 0.200 4660e-17  1.864e-16 2 266 0.833

MNaote. All models include subject

H(1): grip

A model based on the alternative hypothesis that lift speed depends on grip type alone. This has a
very small Bayes factor of 2.26 suggesting that there is very little evidence for this model, compared
to the null model.

H(1): %1RM
A model based on the alternative hypothesis that lift speed depends on %1RM alone. This has an
extremely large BFy (i.e., 3.01*10"?), decisively supporting this model over the null model.

H(1):%1RM + Grip

A model based on the alternative hypothesis that lift speed depends on %1RM and grip type. This also
has an extremely large BFyo (i.e., 1.5*10*), decisively supporting this model over the null model.
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H(1):%1RM + Grip + %1RM*Grip

A model based on the alternative hypothesis that lift speed depends on %1RM, grip type and the
interaction between these two factors. This is the best model and has the largest BFyo (i.e., 4.86*10),
against the null model.

In order to compare the %1RM + Grip model against the %1RM + Grip + %1RM*Grip model, one can
divide out the null hypothesis by computing 4.86*10%%)/ 1.5*10' ) = 324, which should give
(approximately, due to rounding) the same result as the earlier ‘compare to best model’ analysis (i.e.,
BF =322).

Whether one wants to compare to either the best or the null models is a matter of personal choice,
the result is effectively the same.

Analysis of effects

This table shows the prior and posterior inclusion probability and the inclusion Bayes factor for each
of the model's predictors. These data are based on all the models simultaneously.

%1Rmax and grip are considered as the main effects and the %1Rmax*Grip the interaction.

Analysis of Effects
Effects P{incl) Flincl|data) BFina
4 1RMax 0.600 1.000 =
Grip 0.600 1.000 10764591
% 1BMax = Grip 0.200 0.8487 1265774

The data suggests that there is infinite evidence for the inclusion of %1Rmax than a model without
this predictor. (it is ‘infinite’ because of the computer’s limited ability to present very small or very
large numbers,). There is also decisive evidence for the inclusion of Grip and the interaction as
predictors.

Descriptive data and plots are shown below.

Descriptives

S 1R Max Grip WMean 5D M

30% Reverse 1.278 0178 10.000
Traditional 1.482 0217 10.000

L0% Reverse 1.114 0158 10.000
Traditional 1.183 0.256 10.000

T0% Reverse 0,370 0.105 10.000
Traditional 0.817 0.035 10.000
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1.6

Grip
O Reverse
@ Traditional

0.2-

30% 50% 70%
%1RMax
If the evidence suggested that the data is best predicted by the null model or that the evidence for
the alternative was inconsequential. Although evidence for a lack of an effect is still information -
there is no point in following up with further analyses.

POST HOC TESTING

If the ANOVA yields meaningful predictors (i.e., models outperforming the null model), post hoc
testing can now be carried out. In Post Hoc Tests add %1RM to the analysis box on the right. Bayesian
post hoc testing is based on pairwise comparisons using Bayesian t-tests. As in frequentist analyses,
multiple t-tests will increase familywise error. In JASP, methods are used to correct for multiplicity
based on adjusting the prior odds.

In the analysis options, now:

v Plots — Model averaged posteriors — Group levels in a single plot
Add %1Rmax and Grip to the right in ‘Post Hoc tests’. Select Null control.

Post Hoc Comparisons - %1RMax

Prior Odds  Posterior Odds BFi 4 errar %
30% A% 0587 20.382 34.664 3.080e -4
T0% 0587 5.135e +8 8.742e +8 5573e—14
A% T0% 0587 0918.088 1777.453 28068 -5

Nate. The posterior odds have been corrected for multiple testing by fixing to 0.5 the prior
probability that the null hypothesis holdsacross all comparisons (Westfall, Johnson, & Utts,
1997). Individualcomparisons are based on the default t-test with a Cauchy (0. r =1/sqgrt{2))
prior. The "U" in the Bayes factor denotes that it is uncorrected.

The adjusted posterior odds show that there is strong evidence for a difference between 30% and 50%
%1Rmax whereas there is decisive evidence for differences between 30 and 70% as well as 50 and
70%1Rmax.

101 |Page
JASP — Bayesian Inference. Dr Mark Goss-Sampson



Post Hoc Comparisons - Grip

Frior Odds  Posterior Odds BF 1o u error %

Reverse Traditional 1.000 .54 .54 0.002

Maote. The posterior odds have been corrected for multiple testing by fixing to 0.5 the prior
probability that the null hypothesis holdsacross all comparisons (Westfall, Johnson, & Utts,
1997). Individualcomparisons are based on the default t-test with a Cauchy (0. r
=1/zqrt(2]) prior. The "U" in the Bayes factor denotes that it is uncorrected.

There is also moderate evidence for a difference between reverse and traditional grips BFio= 6.54.

The model average posterior distributions for the main effects are shown below. There is a clear
separation between the %1Rmax levels with 30% having the highest lift velocity and 70% the lowest.
For grip, the two distributions are closer but still separate without overlapping credible intervals, with
the traditional grip exhibiting higher lift velocities than the reverse grip.

%1RMax Grip
Level Level
H H — 30% H — Reverse
H — 50% - — Traditional

14 — — 70% 12 -

12 - ” | 10 -
210~ > .
w w
fom =
o 8- (8
(] O 6-

6 -

4- 47

= JU UL -

0- 0- ]

[ I | T T | T 1 [ | | T T 1
-08-06-04-020.00.2 04 06 -1.0 -05 0.0 05 10 15
%1RMax Grip

The model-averaged posterior distributions for the interactions are shown below. As can be seen, the
largest separation is between 70% traditional and reverse lifts.
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Reverse 70% Traditional
15 I v Level
— 30% & Reverse
£ 40 - — 30% & Traditional
c — 50% & Reverse
3 — 50% & Traditional
5 — 70% & Reverse
— 70% & Traditional
n —
[ T T T T T
-0.3 -0.2 -0.1 0.0 0.1 0.2 0.3
%1RMax x Grip
REPORTING THE RESULTS

This study determined the velocity of deadlifts using two different grips and 3 loads based on
%1Rmax. Examination of the Q-Q plots suggested that the assumption of normality was not
violated. A Bayesian mixed factor ANOVA determined that the data were best represented by a
model that included both main factors, grip and load, and the grip*load interaction. The Bayes factor
(BF10) was 4.86*10%, indicating decisive evidence in favour of this model when compared to the null
model. The BFyo in favour of indicating the interaction effect (on top of the two main effects)

equalled 322.

Post hoc comparisons (Bayesian t-tests controlled for multiplicity) were subsequently performed. For
the load, the adjusted posteriors show that there is strong evidence for a difference between 30% and
50% %1Rmax (20.6) whereas there is decisive evidence for differences between 30 and 70% as well as

50 and 70%1Rmax (5.1*108 and 6918 respectively).

1.6

0.2~

Grip
O Reverse
@ Traditional

30% 50%
% 1RMax
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BAYESIAN CONTINGENCY TABLES

This is the equivalent of the frequentist chi-square (x?) test for independence which can be used to
determine if an association exists between two or more categorical variables. The test produces a
contingency table, which displays the cross-grouping of the categorical variables.

The test compares two hypotheses:
Ho: that the categorical variables are independent of each other.

Hi: that the categorical variables are in some way dependent on each other.

The analysis requires two assumptions to be met:
e The two variables must be categorical data (nominal or ordinal)

e Each variable should comprise two or more independent categorical groups

There are 4 methods for determining the Bayes factors based on the sampling plan of the research
design. Consider a researcher wants to collect data on tennis players referred to a physiotherapist for
ankle injuries and is interested to see if there is a link between the player's gender and whether they
had had a previous ankle injury.

e Poisson sampling:

The sampling scheme is to collect data for a six-month period. There is, therefore, no restriction on
the cell counts, the cell and grand total counts will be random. Each cell count will have a Poisson
distribution.

e Joint multinomial sampling:

In this case, data will only be collected for the first 100 players referred to the physiotherapist. This is
like the Poisson scheme except that the grand total is now fixed.

¢ Independent multinomial sampling

In this case, data will be collected from 50 male and 50 female players. Therefore, either the rows or
columns are fixed and therefore multinomially distributed.

e Hypergeometric sampling

Such a sampling system is rarely applied. In this case, data is collected such that BOTH columns AND
rows are fixed. This can also be used when two continuous variables are split by their median values
i.e. median split on age (old-young) and height (small-tall).

When running the Bayesian contingency table analysis, it is important that the correct sampling
scheme is selected in the options.
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RUNNING THE ANALYSIS

Open Bayesian contingency.csv in JASP. This spreadsheet has data from 85 recreational tennis players
referred to a physiotherapist practice with ankle injuries over a 6-month period. There are five
columns of data:

Subject ID

Gender

Type of playing surface

Time of day

Previous history of an ankle injury

vk wnN e

Go to Frequencies > Bayesian Contingency tables. Is there an association between gender and the
history of a previous ankle injury? By convention, the independent variable is usually placed in the
contingency table columns and the dependent variable is placed in the rows.

Move gender to Rows and previous injury to Columns.

¥ Bayesian Contingency Tables 0000
“, Participant 12 =
& Surface g ¥ Gender
& Time
Columns
> & Previous injury

In Statistics, select the following options, noting that the sampling scheme used in this study was
Poisson sampling

¥ Statistics
Sample Additional Statistics
O Poisson Log odds ratio (2x2 anly)
Joint multinomial Credible interval 95 %

Indep. multinomial, rows fixed
Indep. multinomial, columns fixed
Hypergeometrics (2x2 only)

Alt. Hypothesis Plots
() Group one # Group two Log odds ratio (2x2 only)
Group one > Group two Additional info

Group one < Group two

Bayes Factor Prior
) BF1o Prior concentration 1
BFo1
Log(BF1a)
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UNDERSTANDING THE OUTPUT

The output should comprise three tables and one figure. The contingency table shows the counts for
each cell as well as the row and column totals. It can be seen that 33% of females had a history of a
previous ankle injury while for the males it was approximately 25%

Contingency Tables

Previous injury
Gender Mo Yes Total

Female 22 11 33
Male 41 1 52
Total 6.3 22 85

The Bayesian tests report the Bayes factor in support of the alternative hypothesis, where BF1o Poisson
=0.961 (the BF in support of the null hypothesis can be shown by selecting BFo; in the Statistics options
and is 1.04). Therefore, there is no evidence supporting either of the hypotheses and the test is
inconclusive.

In the other table the median log odds ratio and its calculated credible intervals. This works out as
females being only 1.85 times more likely to have had a previous ankle injury compared to males.

Bayesian Contingency Tables Tests Log Cdds Rafio
Value 05% Credible Interval
BF.. Poisson 0.961 Log Odds Ratio Lawer Upper
N 85 -0619 -1575 0336

MNote. Faor all tests, the alternative hypothesis
specifies that group Female is not equal to
group Male.

The Bayes factors and odds ratios are graphically visualised in the Log Odds Ratio plots.

Gender - Previous injury

data | H1
BF ;=1.041 median Log OR =-0.619
BF.; =10.961 95% CI: [-1.585, 0.347]
data | HD
1 —
l |
I 1
08—
= 06—
7]
3
o 04—
02 -
O -
[ I [ |
-2 -1 0 1

Log Odds Ratio
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THE BAIN MODULE

In frequentist statistics when performing null hypothesis significance testing (NHST) there is only a
dichotomous decision for either rejecting or not rejecting the null hypothesis (Ho) based on the
observed data. This does not allow for direct support for Ho only that there is not enough evidence to
reject it. The evidence in favour of Ho itself cannot be quantified.

The null hypothesis is usually stated as Ho: the effect =0

While the alternative hypothesis is Hi: # Ho

The effect in question could be a correlation or difference between means.
For example, when comparing the means of two groups

Ho: the effect=0 mean of group 1 = mean of group 2

Hi: Hi: # Ho mean of group 1 # mean of group 2

When comparing the means of three groups

Ho: the effect=0 mean of group 1 = mean of group 2 = mean group 3

Hi: Hi: # Ho differences between the groups now explicitly exclude Hy, i.e. the three
group means are not equal to each other.

These H; alternatives are considered to be unconstrained and are denoted in JASP as Hu.

BAIN’is an abbreviation for BAyesian INformative hypothesis evaluation. This uses the Bayes factor to
evaluate the evidence for both the Ho and multiple alternative hypotheses without having to account
for multiple testing.

When null and alternative hypotheses are evaluated using the Bayes factor, all have equal standing,
i.e. neither has the role of the traditional null or alternative hypotheses, they are simply different
hypotheses. The probability of observing the data is computed given each hypothesis and translated
into the Bayes factor from which the best hypothesis is selected.

BAIN allows alternative hypotheses by offering or entering model constraints. In a t-test, for example,
the four possible hypotheses could be:

Ho: the effect=0 mean of group 1 = mean of group 2
Hu: Hu: # Ho mean of group 1 # mean of group 2
Hi: mean of group 1 > mean of group 2
H2: mean of group 1 < mean of group 2

7 Hoijtink H et al (2019). A tutorial on testing hypotheses using the Bayes factor. Psychological Methods, 24,
539-556. DOI: 10.1037/met0000201
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Independent t-test example

For comparisons of hypotheses, JASP uses Welch’s t-test which does not assume that the variance of
the dependent variable is the same in both groups. Open JASP and go to the + icon at the top right
and tick the BAIN module. This will now add BAIN to the top menu.

Open Independent t-test.csv, click on BAIN ~ ®"  and then select Welch's t-test. Add Weight gain
to the dependent variable and Diet to the grouping variable. In the main options select:

Hypothesis test as Equal vs. not equal (i.e. Ho: the effect = 0 and unconstrained Hi: # Ho). The analysis
assigns equal prior probabilities for each hypothesis (0.5:0.5).

v

v
v
v

Bayes factor: BFyo
Other vs. equal
Tables — Descriptives

Plots — posterior probabilities and descriptive plots

This should result in two tables and two plots.

Bain Independent Samples Welch's T-Tast

Hypothesis BF FPosterior probahility
Weight gain H: Equal 0.039
H1: Mot equal 24703 0.961

Nate. The alternative hypothesis H1 specifies that the mean of group 11s
unegual to the mean of group 2. The posterior probabilities are based on
equal prior probabilities.

This table shows the evidence in support of the two competing hypotheses. This provides strong
evidence in favour of the unconstrained alternative hypothesis which has a posterior probability of
96.1% compared to 3.9% for the null hypothesis. The Bayes factor is therefore 24.7 (0.961/0.039).

Posterior Probabilities

Weight gain Weight gain
10

£

©

o

=

=

o

=

5 -
T 1
Burgers Sushi
Diet
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The posterior probabilities are also visualised on a pizza plot. The descriptive statistics and plot show
that weight gain is higher on a burger diet.

Adding constrained alternative hypotheses

Return to the main analysis options where JASP offers a series of unconstrained and constrained
models. Now select Equal vs, bigger vs. smaller.

Hypothesis Test
) Equal vs. not equal
Equal vs. bigger
Equal vs. smaller
Bigger vs. smaller

Equal vs. bigger vs. smaller

Now three hypotheses have been tested:
Ho: mean of group 1 = mean of group 2
Hi: mean of group 1 > mean of group 2

H2: mean of group 1 < mean of group 2

By selecting BF1o, the alternative hypotheses are compared to the null hypothesis. Having seen the
data there is strong evidence (BFio = 49.4) in favour of Hy with a posterior probability of 97.9%
compared to 2% for Hp and 0.1% for H2.

Bain Independent Samples Welch's T-Test

Hypothesis EF Fosterior probability
Weight gain HO: Egual 0.020

H1: Bigger 49 358 0579

Hz: Smaller 0.047 0.001

Mote. The null hypothesis HO (egual group means) is tested against
H1 {first mean larger than second mean) and H2 {first mean smaller
than second mean). The posterior probabilities are based on egual
prior probabilities.

When comparing H2 with Ho, the BF19=0.047 or BFo; =21.1 (1/0.047). If both hypotheses are deemed
equally likely a priori, this means that the null hypothesis is now 21 times more likely than group 1
being smaller than group 2.
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EXPERIMENTAL DESIGN AND DATA LAYOUT IN EXCEL FOR JASP IMPORT.
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Independent t-test
Design example:

Independent variable Group 1 Group 2
Dependent variable Data Data
Independent variable Dependent variable
Categorical Continuous

A it B
1| Group Data
2 1 0
3 1 0
4 1 3.8
5 1 6
6 1 0.7
7 1 2.9
8 1 2.8
9 1 2
10 1 2
11 1 8.5
12 1 1.9
13 1 3.1
14 | 1 1.5
15 1 3
16 1 3.6
17 | 1 0.9
18 1 -2.1
19 2 2
20 2 1.7
21 2 4.3
22 2 7
23 2 0.6
24 2 2.7
25 2 3.6

More dependent variables can be added if required

JASP — Bayesian Inference. Dr Mark Goss-Sampson

111 |Page



Paired samples t-test
Design example:

Independent variable Pre-test Post-test
Participant Dependent variable
1 Data Data
2 Data Data
3 Data Data
..n Data Data
Pre-test Post-test

A A | B

1 Pre-test Post-test

2 | 60 60

3_ 103 103

4 | 58 54

5 60 54

6 64 63

7 64 61

8 | 65 62

9 66 64

10 67 65

11 69 61

12 70 68

13 70 67

14 72 71

15 72 69

16 72 68

17 82 81

18 58 60

19 58 56

20 | 59 57

21 61 57

22 62 55

23 63 62

24 63 60

25 63 59

JASP — Bayesian Inference.

Dr Mark Goss-Sampson
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Correlation
Design example:

Simple correlation

A

[

Participant Variable 1 Variable 2 Variable 3 Variable 4 Variable ..n
1 Data Data Data Data Data
2 Data Data Data Data Data
3 Data Data Data Data Data
..n Data Data Data Data Data
Multiple correlation
A A | B | i | D | E | F
1 | Participant Variablel Variable2 Variable3 Variable4 Variable5
2_ 1 533 77 77 106 106
3_ 2 472 a3 29 92 93
4_ 3 484 B2 77 93 78
5_ 4 536 72 72 103 93
E_ 5 630 77 ki 104 93
}'_ ] 563 it it 101 87
B_ 7 531 77 B2 108 106
9_ 8 344 a0 20 86 92
10 9 346 54 50 90 86
11 10 386 59 54 85 80
11 11 460 54 63 89 83
li 12 492 a3 29 92 94
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Regression.

Design example:

Simple Regression

A
| |
Participant Outcome Predictor 1 Predictor 2 Predictor 3 Predictor ..n
1 Data Data Data Data Data
2 Data Data Data Data Data
3 Data Data Data Data Data
N Data Data Data Data Data
Multiple regression
y | A B | C | ) | E | F |
1 | Participant = Outcome Predictorl Predictor2 Predictor3 Predictor4
2_ 1 533 7 i7 106 106
3_ 2 472 63 29 92 93
4 | 3 484 82 77 93 78
5_ 4 336 72 72 103 93
6 | 3 630 7 o8 104 93
}'_ ] 563 68 08 101 a7
g 7 331 7 82 108 106
Ei_ b 344 a0 a0 86 92
10 9 346 54 50 90 86
11 10 386 59 54 85 80
12 11 460 24 03 89 83
1z 12 492 63 29 92 94
More factors and covariates can be added if required
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One-way Independent ANOVA
Design example:

Independent variable Group 1 Group 2 Group 3 Group...n
Dependent variable Data Data Data Data
Independent variable Dependent variable
(Categorical) (Continuous)
A A | E
1 Group Dependent variable
2 Group 1 3.8
3 | Group 1 7]
4 ] Group 1 0.7
2 | Group 1 2.9
6 | Group 1 2.8
7 Group 1 2
g8 Group 1 2
9 | Group 1 3.5
10 Group 2 1.9
11 | Group 2 3.1
12 Group 2 1.5
13 | Group 2 3
14 | Group 2 3.6
15| Group 2 0.9
16 Group 2 -0.6
17 | Group 3 1.1
18 Group 3 4.5
19 | Group 3 6.1
20 | Group 3 5
21 | Group 3 2.4
22 Group 3 3.9
23 | Group 3 3.5
24 | Group 3 5.1
25 Group 3 3.5

More dependent variables can be added if required
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One-way repeated measures ANOVA
Design example:

Independent variable (Factor)

Participant Level 1 Level 2 Level 3 Level..n
1 Data Data Data Data
2 Data Data Data Data
3 Data Data Data Data
4 Data Data Data Data
..n Data Data Data Data
Factor (time)
A A B C D
Levels

1 | Participant Week 0 Week 3 Week 6

2 | 1 6.42 5.83 5.75 (Related groups)

3_ 2 6.76 6.2 6.13

4_ 3 6.56 5.83 5.71

5_ 4 4.8 4.27 4.15

Er_ 5 8.43 7.71 7.67

}'_ 7] 7.49 7.12 7.05

B_ 7 8.05 7.25 7.1

9_ B 5.05 4.63 4.67

10 | 9 5.77 5.31 5.33

IL 10 3.91 3.7 3.66

12, 1 6.77 6.15 5.96

13| 12 6.44 5.59 5.64

li 13 6.17 5.56 5.51

li 14 7.67 7.11 6.96

16, 15 7.34 6.84 6.82

1}'_ 16 0.85 6.4 6.29

18 17 5.13 4.52 4.45

]il 13 5.73 5.13 5.17

More levels can be added if required
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Two-way Independent ANOVA
Design example:

Factor 1 Supplement 1 Supplement 2
Factor 2 Dose 1 Dose 2 Dose 3 Dose 1 Dose 2 Dose 3
3:::2;: ent Data Data Data Data Data Data
Factorl Factor2 Dependent variable

A A B C |

1| supp dose len

2 ol 1000 19.7

3_ ol 1000 23.3

4 | ol 1000 23.6

5_ ol 1000 26.4

B ol 1000 20

}'_ ol 1000 25.2

g | ol 1000 25.8

9_ ol 1000 21.2

10 | ol 1000 14.5

ll ol 1000 27.3

12 ol 2000 253.5

li ol 2000 26.4

14 ol 2000 22.4

li ol 2000 24.5

16 ol 2000 24.8

1}'_ ol 2000 30.9

18 ol 2000 26.4

]i ol 2000 27.3

20 | ol 2000 29.4

Ei ol 2000 23

22 VC 1000 16.5

Ei VC 1000 16.5

24 VC 1000 15.2

Ei VC 1000 17.3

More factors and dependent variables can be added if required
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Two-way Repeated measures ANOVA
Design example:

JASP — Bayesian Inference. Dr Mark Goss-Sampson

Factor 1 Level 1 Level 2
Interventions i.e. intervention 1 i.e. intervention 2
Factor 2 Level 1 Level 2 Level 3 Level 1 Level 2 Level 3
Time i.e.timel | i.e.time2 | i.e.time3 | i.e.timel | i.e.time2 | i.e.time 3
1 Data Data Data Data Data Data
2 Data Data Data Data Data Data
3 Data Data Data Data Data Data
..n Data Data Data Data Data Data
Factor 1 levels 1-n Factor 2 levels 1-n
A A B | C | D E
1 | Subject Factor1llevel 1 Factor 1 level 2 Factor 2 level 1 Factor 2 level 2
1’_ A 7.38 0.52 9.27 14.32
3_ B 7.71 10.83 11.48 16.38
4_ [ 6.19 10.42 9. 77 15.45
5_ [B] 9.27 11.78 15.45 16.96
6_ E 11.41 9.52 11.65 15.64
}'_ F 5.29 5.82 9.22 13.01
B_ G 8.54 9.43 10.92 17.35
9_ H 7.89 8.43 8.26 12.57
1[}_ I 5.49 6.64 11.39 14.02
11_ ] 9.26 9.36 13.03 16.24
12_ K 6.9 7.09 9.02 14.7
13_ L 8.57 9.64 8.33 13.71
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Two-way Mixed Factor ANOVA
Design example:

Factor 1 Group 1 Group 2
(Between subjects)
Factor 2 levels Trial 1 Trial 2 Trial 3 Trial 1 Trial 2 Trial 3
(Repeated measures)
1 Data Data Data Data Data Data
2 Data Data Data Data Data Data
3 Data Data Data Data Data Data
..n Data Data Data Data Data Data
Factor 1 Factor 2 levels
(Categorical) (Continuous)

y | A | B | C | )

1 Group Level 1 Level 2 Level 3

2 Group 1 1.21 0.9 0.9

3_ Group 1 1.29 0.89 0.72

4 | Group 1 1.8 0.9 0.96

5_ Group 1 1.4 1.26 0.97

E_ Group 1 1.49 1.18 0.88

?_ Group 1 1.35 1.15 0.92

8 | Group 1 1.45 1.19 1

g Group 1 1.21 1.2 0.85

10 Group 1 1.79 1.48 0.99

ll Group 1 1.73 1.68 0.98

12|  Group2 1.55 0.9 0.55

13_ Group 2 1.27 0.95 0.41

14_ Group 2 1.53 0.87 0.42

15|  Group2 1.26 1.15 0.44

16_ Group 2 1.14 1.12 0.38

1}'_ Group 2 1.11 1.08 0.34

18_ Group 2 1.1 1.0758 0.18

19|  Group2 1.08 1.18 0.24

2[}_ Group 2 1.3 1.26 0.39

21_ Group 2 1.45 1.55 0.44
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Contingency tables
Design example:

Participant Response 1 Response 2 Response 3 Response...n
1 Data Data Data Data
2 Data Data Data Data
3 Data Data Data Data
..n Data Data Data Data
All data should be categorical
y | A | B | C ] | E |
1 | Respondant Responsel Response2  Response 3 Response 4
2 1 Female clay Morning yes
3 2 Male astro Morning Mo
4 | 3 Female grass Evening No
5 | 4 Male clay Afternocon Mo
6 3 Male clay Morning Mo
7 ] B Male grass Evening Mo
8 | 7 Female grass Evening yes
9 | 8 Male clay Morning yes
10 9 Female grass Morning No
11 | 10 Male clay Afternocon Mo
12 | 11 Female clay Afternoon Mo
13 | 12 Male astro Afternocon Mo
14 13 Male astro Afterncon Mo
15 | 14 Male astro Afternocon yes
16 | 15 Female clay Morning Mo
17 | 16 Male astro Afternocon yes
18 17 Female astro Afternoon yes
19 18 Male grass Maorning Mo
20 19 Male clay Afternoon Mo
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